scholarly journals Uncertainty assessment for measurement and simulation in selective laser melting: a case study of an aerospace part

ACTA IMEKO ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 96
Author(s):  
Giulio D'Emilia ◽  
Antoniomaria Di Ilio ◽  
Antonella Gaspari ◽  
Emanuela Natale ◽  
Antonios G. Stamopoulos

<p class="Abstract"><span lang="EN-US">In this work, the additive manufacturing process selective laser melting is analysed with the aim of realising a complex piece for aerospace applications. In particular, the effect of the manufacturing process and of the following thermal treatments on the dimensions of the workpiece is evaluated. The study is based on a hybrid approach including a simulation of the whole manufacturing process by advanced software packages and the dimensional measurements of the realised pieces taken by a coordinate measuring machine (CMM). The integrated use of simulation and measurements is carried out with the aim of validating the simulation results and of identifying the operational limits of both approaches; this analysis is based on metrological evaluation of the results of both the simulation and the tests, taking into account the uncertainty of the data. In addition, the main causes of uncertainty for the simulation activity and the experimental data have been identified, and the effects of some of them have also been experimentally evaluated. Based on the experimental validation, the simulation seems to predict the absolute displacement of the supports of the piece in a satisfactory way, while it is unable, in the actual configuration, to assess the conformity of the surface to its very tight shape tolerances. Conformity assessment of the surface should be carried out by CMM measurement. Integrated use of simulation and experimental results is expected to strongly improve the accuracy of simulation results for the effective and accurate design and control of the additive manufacturing process, including dimensional control and thermal treatments to mitigate induced thermal stresses.</span></p>

2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


Author(s):  
Shoichi Tamura ◽  
Takashi Matsumura ◽  
Atsushi Ezura ◽  
Kazuo Mori

Abstract Additive manufacturing process of maraging steel has been studied for high value parts in aerospace and automotive industries. The hybrid additive / subtractive manufacturing is effective to achieve tight tolerances and surface finishes. The additive process induces anisotropic mechanical properties of maraging steel, which depends on the laser scanning direction. Because anisotropy in the workpiece material has an influence on the cutting process, the surface finish and the dimension accuracy change according to the direction of the cutter feed with respect to the laser scanning direction. Therefore, the cutting parameters should be determined to control the cutting force considering material anisotropy. The paper discusses the cutting force in milling of maraging steel stacked with selective laser melting, as an additive manufacturing process. Anisotropic effect on the cutting forces is proved with the changing rate of the cutting force in milling of the workpieces stacked by repeating laser scanning at 0/90 degrees and 45/-45 degrees. The cutting forces, then, are analyzed in the chip flow models with piling up of orthogonal cuttings. The force model associates anisotropy with the shear stress on the shear plane. The changes in the cutting forces with the feed direction are discussed in the cutting tests and analysis.


Author(s):  
Bilal Hussain ◽  
A. Sherif El-Gizawy

Selective Laser Melting (SLM) is one of the important Additive Manufacturing techniques for building functional products. Nevertheless, the absence of accurate models for predicting the SLM process behavior, delays development of cost effective and defects free process. This work presents a coupled thermo-mechanical numerical model to capture the two phase (solid-liquid) solidification melting phenomena that occur in the process. The proposed model will also predict the evolvement of process-induced properties and defects particularly residual stresses caused by temperature gradient and thermal stresses. CO2 or Nd:YAG laser beam can be used as a heat source with a Gaussian distribution for the laser beam energy.


Author(s):  
Shoichi Tamura ◽  
Takashi Matsumura ◽  
Atsushi Ezura ◽  
Kazuo Mori

Abstract Additive manufacturing process of maraging steel has been studied for high value parts in aerospace and automotive industries. The hybrid additive / subtractive manufacturing is effective to achieve tight tolerances and surface finishes. The additive process induces anisotropic mechanical properties of maraging steel, which depends on the laser scanning direction. Because anisotropy in the workpiece material has an influence on the cutting process, the surface finish and the dimension accuracy change according to the direction of the cutter feed with respect to the laser scanning direction. Therefore, the cutting parameters should be determined to control the cutting force considering material anisotropy. The paper discusses the cutting force in milling of maraging steel stacked with selective laser melting, as an additive manufacturing process. Anisotropic effect on the cutting forces is proved with the changing rate of the cutting force in milling of the workpieces stacked by repeating laser scanning at 0/90 degrees and 45/−45 degrees. The cutting forces, then, are analyzed in the chip flow models with piling up of orthogonal cuttings. The force model associates anisotropy with the shear stress on the shear plane. The changes in the cutting forces with the feed direction are discussed in the cutting tests and analysis.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5753
Author(s):  
David Sommer ◽  
Babette Götzendorfer ◽  
Cemal Esen ◽  
Ralf Hellmann

We report on a comprehensive study to evaluate fundamental properties of a hybrid manufacturing approach, combining selective laser melting and high speed milling, and to characterize typical geometrical features and conclude on a catalogue of design rules. As for any additive manufacturing approach, the understanding of the machine properties and the process behaviour as well as such a selection guide is of upmost importance to foster the implementation of new machining concepts and support design engineers. Geometrical accuracy between digitally designed and physically realized parts made of maraging steel and dimensional limits are analyzed by stripe line projection. In particular, we identify design rules for numerous basic geometric elements like walls, cylinders, angles, inclinations, overhangs, notches, inner and outer radii of spheres, chamfers in build direction, and holes of different shape, respectively, as being manufactured by the hybrid approach and compare them to sole selective laser melting. While the cutting tool defines the manufacturability of, e.g., edges and corners, the milling itself improves the surface roughness to Ra < 2μm. Thus, the given advantages of this hybrid process, e.g., space-resolved and custom-designed roughness and the superior geometrical accuracy are evaluated. Finally, we exemplify the potential of this particular promising hybrid approach by demonstrating an injection mold with a conformal cooling for a charge socket for an electro mobile.


2020 ◽  
Vol 26 (10) ◽  
pp. 1713-1722
Author(s):  
Eduardo Cuesta ◽  
Braulio J. Alvarez ◽  
Pablo Zapico ◽  
Sara Giganto

Purpose This study aims to analyze the effect of the different common post-processes on the geometrical and dimensional accuracy of selective laser melting (SLM) parts. Design/methodology/approach An artefact has been designed including cubic features formed by planar surfaces orientated according to the machine axes, covering all the X-Y area of the working space. The artefact has been analyzed both geometrically (flatness, parallelism) and dimensionally (sizes, distances) from coordinate measuring machine measurement results at three stages, namely, as-built, after sand-blasting and after stress-relieving heat treatment. Findings Results from the SLM machine used in this study lead to smaller parts than the nominal ones. This effect depends on the direction of the evaluated dimension of the parts, i.e. X, Y or Z direction and is differently affected by the sandblasting post-process (average erosion ratio of 68, 54 and 9 µm, respectively), being practically unaltered by the HT applied after. Originality/value This paper shows the influence, from a geometric and dimensional point of view, of two of the most common post-processes used after producing SLM parts, such as sand-blasting and stress-relieving heat treatment, that have not been considered in previous research.


China Foundry ◽  
2021 ◽  
Vol 18 (4) ◽  
pp. 265-285
Author(s):  
Bo Wu ◽  
Xiao-yuan Ji ◽  
Jian-xin Zhou ◽  
Huan-qing Yang ◽  
Dong-jian Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document