Analysis of post-processing influence on the geometrical and dimensional accuracy of selective laser melting parts

2020 ◽  
Vol 26 (10) ◽  
pp. 1713-1722
Author(s):  
Eduardo Cuesta ◽  
Braulio J. Alvarez ◽  
Pablo Zapico ◽  
Sara Giganto

Purpose This study aims to analyze the effect of the different common post-processes on the geometrical and dimensional accuracy of selective laser melting (SLM) parts. Design/methodology/approach An artefact has been designed including cubic features formed by planar surfaces orientated according to the machine axes, covering all the X-Y area of the working space. The artefact has been analyzed both geometrically (flatness, parallelism) and dimensionally (sizes, distances) from coordinate measuring machine measurement results at three stages, namely, as-built, after sand-blasting and after stress-relieving heat treatment. Findings Results from the SLM machine used in this study lead to smaller parts than the nominal ones. This effect depends on the direction of the evaluated dimension of the parts, i.e. X, Y or Z direction and is differently affected by the sandblasting post-process (average erosion ratio of 68, 54 and 9 µm, respectively), being practically unaltered by the HT applied after. Originality/value This paper shows the influence, from a geometric and dimensional point of view, of two of the most common post-processes used after producing SLM parts, such as sand-blasting and stress-relieving heat treatment, that have not been considered in previous research.

2011 ◽  
Vol 701 ◽  
pp. 15-20 ◽  
Author(s):  
Rupinder Singh ◽  
Varinderjit Singh

Rapid prototyping (RP) has been in evidence for the past twenty years and is being widely used in diverse areas, from the building of aesthetic and functional prototypes to the production of tools and moulds for technological prototypes. The purpose of the present study is to experimentally investigate the rapid moulding (RM) solutions for plastic components using polyjet printing (PP) technique. Starting from the identification of component/benchmark, prototypes with three different type of plastic material were produced, at different orientation and support material. Measurements on the coordinate measuring machine helped in calculating the dimensional tolerances of the plastic components produced. Some important mechanical properties were also compared to verify the suitability of the components. The study highlighted the best orientation, support material quantity and type of plastic material for the selected component from dimensional accuracy and economic point of view as RM solution for plastic components. This process ensures rapid production of pre-series technological prototypes and proof of concept at less production cost and time.


2014 ◽  
Vol 20 (4) ◽  
pp. 301-310 ◽  
Author(s):  
Teodora Marcu ◽  
Cinzia Menapace ◽  
Luca Girardini ◽  
Dan Leordean ◽  
Catalin Popa

Purpose – The purpose of this paper was to obtain by means of selective laser melting and then characterize biocomposites of medical-grade Ti6Al7Nb with hydroxyapatite (2 and 5 vol.%) and without hydroxyapatite, as reference. Design/methodology/approach – Rectangular samples were manufactured with the same scanning strategy; the laser power was between 50 W and 200 W. Processed samples were analysed by means of optical microscopy, scanning electron microscopy and microhardness. Findings – The results showed that despite the very short processing times, hydroxyapatite decomposed and interacted with the base Ti6Al7Nb material. The decomposition degree was found to depend on the applied laser power. From the porosity and bulk microstructure point of view, the most appropriate materials for the purposed medical applications were Ti6Al7Nb with hydroxyapatite processed with a laser power of 50 W. Originality/value – The originality of the present work consists in the study of the behaviour and interaction of hydroxyapatite additive with the Ti6Al7Nb base powder under selective laser melting conditions, as depending on the applied laser power.


Author(s):  
Rupinder Singh ◽  
Varinderjit Singh ◽  
Manohar Singh Saini

Rapid prototyping (RP) has been in evidence for the past twenty years and is being widely used in diverse areas, from the building of aesthetic and functional prototypes to the production of tools and moulds for technological prototypes. The purpose of the present study is to experimentally investigate statistically controlled rapid moulding (RM) solutions for plastic components using polyjet printing (PP). Starting from the identification of component/benchmark, prototypes with three different type of plastic material were prepared, at different orientations. Measurements on the coordinate measuring machine helped in calculating the dimensional tolerances of the components prepared. Some important mechanical properties were also compared to verify the suitability of the components. The study highlighted the best orientation, support material quantity and type of plastic material for the selected component from dimensional accuracy and economic point of view as RM solution for plastic components. Final components prepared are acceptable as per ISO standard UNI EN 20286-I (1995). This process ensures rapid production of statistically controlled pre-series technological prototypes and proof of concept at less production cost and time.


2018 ◽  
Vol 24 (7) ◽  
pp. 1235-1244 ◽  
Author(s):  
Mingkang Zhang ◽  
Yongqiang Yang ◽  
Changhui Song ◽  
Yuchao Bai ◽  
Zefeng Xiao

PurposeThis study aims to focus on the heat treatment influence on the corrosion resistance, adhesion of Streptococcus mutans and mechanical properties of CoCrMo alloys manufactured by the selective laser melting (SLM). Design/methodology/approachCoCrMo alloys were manufactured using the Dimetal-100 machine. X-ray diffraction (XRD), metallographic analysis, scanning electron microscopy (SEM), electrochemical corrosion, Vickers microhardness and tensile tests were used to characterize SLM-produced CoCrMo alloys and compare them with the ones manufactured by casting and with the ASTM F75 standard. FindingsThe electrochemical results showed that SLM900 samples had the best corrosion resistance in artificial saliva. The adhesion results showed least propagation and overall quantity of Streptococcus mutans on the SLM900 sample. The microhardness, tensile and yield strength of As-SLM, SLM900 and SLM1200D samples were measured according to the ASTM F75 standard. The elongation of SLM900 was less than 8 per cent, which does not meet the standard specifications. Analysis of the fracture morphology showed that the fracture mechanisms of As-SLM and SLM1200D belong to the quasi-cleavage fracture type, and the mechanical fracture mechanism of SLM900 can be characterized as brittle fracture. Originality/valueThis paper presents the adhesion properties of Streptococcus mutans on the surface of CoCrMo alloys manufactured by SLM and proposes how to regulate the effect of the heat treatment on the corrosion resistance and mechanical properties of CoCrMo alloys manufactured by SLM.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2126 ◽  
Author(s):  
Shikai Zhang ◽  
Pan Ma ◽  
Yandong Jia ◽  
Zhishui Yu ◽  
Rathinavelu Sokkalingam ◽  
...  

In this study, a combination of Al–12Si and Al–20Si (Al–(12-20)Si) alloys was fabricated by selective laser melting (SLM) as a result of increased component requirements such as geometrical complexity and high dimensional accuracy. The microstructure and mechanical properties of the SLM Al–(12-20)Si in as-produced as well as in heat-treated conditions were investigated. The Al–(12-20)Si interface was in the as-built condition and it gradually became blurry until it disappeared after heat treatment at 673 K for 6 h. This Al–(12-20)Si bi-material displayed excellent mechanical properties. The hardness of the Al–20Si alloy side was significantly higher than that of the Al–12Si alloy side and the disparity between both sides gradually decreased and tended to be consistent after heat treatment at 673 K for 6 h. The tensile strength and elongation of the Al–(12-20Si) bi-material lies in between the Al–12Si and Al–20Si alloys and fracture occurs in the Al–20Si side. The present results provide new insights into the fabrication of bi-materials using SLM.


ACTA IMEKO ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 96
Author(s):  
Giulio D'Emilia ◽  
Antoniomaria Di Ilio ◽  
Antonella Gaspari ◽  
Emanuela Natale ◽  
Antonios G. Stamopoulos

<p class="Abstract"><span lang="EN-US">In this work, the additive manufacturing process selective laser melting is analysed with the aim of realising a complex piece for aerospace applications. In particular, the effect of the manufacturing process and of the following thermal treatments on the dimensions of the workpiece is evaluated. The study is based on a hybrid approach including a simulation of the whole manufacturing process by advanced software packages and the dimensional measurements of the realised pieces taken by a coordinate measuring machine (CMM). The integrated use of simulation and measurements is carried out with the aim of validating the simulation results and of identifying the operational limits of both approaches; this analysis is based on metrological evaluation of the results of both the simulation and the tests, taking into account the uncertainty of the data. In addition, the main causes of uncertainty for the simulation activity and the experimental data have been identified, and the effects of some of them have also been experimentally evaluated. Based on the experimental validation, the simulation seems to predict the absolute displacement of the supports of the piece in a satisfactory way, while it is unable, in the actual configuration, to assess the conformity of the surface to its very tight shape tolerances. Conformity assessment of the surface should be carried out by CMM measurement. Integrated use of simulation and experimental results is expected to strongly improve the accuracy of simulation results for the effective and accurate design and control of the additive manufacturing process, including dimensional control and thermal treatments to mitigate induced thermal stresses.</span></p>


2019 ◽  
Vol 25 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Miguel Sangregorio ◽  
Ningfei Wang ◽  
Kan Xie ◽  
Zun Zhang ◽  
Xiaojun Wang

Purpose Traditional ion optics manufacturing processes are complex and costly. The purpose of this paper is to study the feasibility of using selective laser melting (SLM) to produce additively manufactured ion optics. Design/methodology/approach An SLM machine was used to generate Ti6Al4V screen grids. The output was separated through wire cutting from the build platform and studied through a scanning electron microscope. To increase the geometrical accuracy of the original grid, samples consisting of nine-aperture arrays were fabricated with different parameter combinations, increasing the energy density. An empirical method to correlate the energy density applied in the fabrication process with the dimensional accuracy of the hole array positioning was developed through the analysis of multiple samples. Findings The SLM machine generated grids with optimal microstructure, the apertures fell within the specified tolerances and tolerances of slightly less than 10 µm can be guaranteed for the hole array positioning. The grids’ upper surfaces presented good-quality surface finish, and the lower surface quality was acceptable when the wire cutting process that separated the grid from the build platform performed slowly. Regardless of the build strategy, the stresses generated in the separation process caused the warping of the ion optic, so a flattening operation was necessary in all cases. Originality/value This research proved that SLM is a viable solution for ion optics fabrication, faster (less than 24 h) and less expensive (order of US$300) than traditional fabrication methods (with fabrication times from 24 to more than 400 h and costs from US$500 to US$5,000, depending on the material, size and shape).


Author(s):  
Naeem Eshawish ◽  
Savko Malinov ◽  
Wei Sha ◽  
Patrick Walls

AbstractAdditive manufacturing (AM) is defined as a technology performed for tooling applications. It is used for manufacturing tools that have complex shapes and figures. In this study, an extensively applied Ti-6Al-4V alloy was made using the selective laser melting method. Post-production heat treatments were applied to decrease thermal stresses and to enhance the mechanical properties and the microstructure. The study investigates the fatigue mechanical properties, microstructure, hardness, and porosity of the AM Ti-6Al-4V after stress relieving (SR) and after SR followed by hot isostatic pressing (HIP). The samples’ upper and lower parts were independently examined to determine the effects of thermal conditions and the heat treatment of the microstructure. The microstructures were examined through optical microscopy, scanning electron microscopy and x-ray diffraction methods. The mechanical properties were investigated through microhardness testing, alongside assessment by fatigue testing at room temperature. The findings demonstrated that the microstructure after SR at 704 °C for 2 h is 100% fine martensitic α'-Ti, with a microhardness value of 408 HV. Air and furnace cooled samples have a more homogenous structure and are characterised by mixture (α + β) with microhardness values of 382 and 356 HV, respectively. After HIP at 920 °C and 100 MPa for 2 h was applied, the martensite was converted into a lamellar (α + β) microstructure, whereby the α phase is presented as fine needles situated among the β ridges in the microstructure, with the existence of the prior β grain boundary.


Sign in / Sign up

Export Citation Format

Share Document