Application of artificial intelligence (AI) and machine learning (ML) in pediatric epilepsy: a narrative review

2021 ◽  
Vol 0 ◽  
pp. 0-0
Author(s):  
Hunmin Kim ◽  
Hee Hwang
2020 ◽  
Vol 9 (12) ◽  
pp. 3811 ◽  
Author(s):  
Gaby N. Moawad ◽  
Jad Elkhalil ◽  
Jordan S. Klebanoff ◽  
Sara Rahman ◽  
Nassir Habib ◽  
...  

Technology has been integrated into every facet of human life, and whether it is completely advantageous remains unknown, but one thing is for sure; we are dependent on technology. Medical advances from the integration of artificial intelligence, machine learning, and augmented realities are widespread and have helped countless patients. Much of the advanced technology utilized by medical providers today has been borrowed and extrapolated from other industries. There remains no great collaboration between providers and engineers, which may be why medicine is only in its infancy of innovation with regards to advanced technologic integration. The purpose of this narrative review is to highlight the different technologies currently being utilized in a variety of medical specialties. Furthermore, we hope that by bringing attention to one shortcoming of the medical community, we may inspire future innovators to seek collaboration outside of the purely medical community for the betterment of all patients seeking care.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1511
Author(s):  
Giovanna Cilluffo ◽  
Salvatore Fasola ◽  
Giuliana Ferrante ◽  
Velia Malizia ◽  
Laura Montalbano ◽  
...  

This narrative review aims to provide an overview of the main Machine Learning (ML) techniques and their applications in pharmacogenetics (such as antidepressant, anti-cancer and warfarin drugs) over the past 10 years. ML deals with the study, the design and the development of algorithms that give computers capability to learn without being explicitly programmed. ML is a sub-field of artificial intelligence, and to date, it has demonstrated satisfactory performance on a wide range of tasks in biomedicine. According to the final goal, ML can be defined as Supervised (SML) or as Unsupervised (UML). SML techniques are applied when prediction is the focus of the research. On the other hand, UML techniques are used when the outcome is not known, and the goal of the research is unveiling the underlying structure of the data. The increasing use of sophisticated ML algorithms will likely be instrumental in improving knowledge in pharmacogenetics.


Author(s):  
Matthew N. O. Sadiku ◽  
Chandra M. M Kotteti ◽  
Sarhan M. Musa

Machine learning is an emerging field of artificial intelligence which can be applied to the agriculture sector. It refers to the automated detection of meaningful patterns in a given data.  Modern agriculture seeks ways to conserve water, use nutrients and energy more efficiently, and adapt to climate change.  Machine learning in agriculture allows for more accurate disease diagnosis and crop disease prediction. This paper briefly introduces what machine learning can do in the agriculture sector.


Author(s):  
M. A. Fesenko ◽  
G. V. Golovaneva ◽  
A. V. Miskevich

The new model «Prognosis of men’ reproductive function disorders» was developed. The machine learning algorithms (artificial intelligence) was used for this purpose, the model has high prognosis accuracy. The aim of the model applying is prioritize diagnostic and preventive measures to minimize reproductive system diseases complications and preserve workers’ health and efficiency.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Sign in / Sign up

Export Citation Format

Share Document