scholarly journals A survey on fractal dimension for fractal structures

2016 ◽  
Vol 1 (2) ◽  
pp. 437-472 ◽  
Author(s):  
M. Fernández-Martínez

AbstractAlong the years, the foundations of Fractal Geometry have received contributions starting from mathematicians like Cantor, Peano, Hilbert, Hausdorff, Carathéodory, Sierpiński, and Besicovitch, to quote some of them. They were some of the pioneers exploring objects having self-similar patterns or showing anomalous properties with respect to standard analytic attributes. Among the new tools developed to deal with this kind of objects, fractal dimension has become one of the most applied since it constitutes a single quantity which throws useful information concerning fractal patterns on sets. Several years later, fractal structures were introduced from Asymmetric Topology to characterize self-similar symbolic spaces. Our aim in this survey is to collect several results involving distinct definitions of fractal dimension we proved jointly with Prof.M.A. Sánchez-Granero in the context of fractal structures.

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 453 ◽  
Author(s):  
Chen

Fractal geometry provides a powerful tool for scale-free spatial analysis of cities, but the fractal dimension calculation results always depend on methods and scopes of the study area. This phenomenon has been puzzling many researchers. This paper is devoted to discussing the problem of uncertainty of fractal dimension estimation and the potential solutions to it. Using regular fractals as archetypes, we can reveal the causes and effects of the diversity of fractal dimension estimation results by analogy. The main factors influencing fractal dimension values of cities include prefractal structure, multi-scaling fractal patterns, and self-affine fractal growth. The solution to the problem is to substitute the real fractal dimension values with comparable fractal dimensions. The main measures are as follows. First, select a proper method for a special fractal study. Second, define a proper study area for a city according to a study aim, or define comparable study areas for different cities. These suggestions may be helpful for the students who take interest in or have already participated in the studies of fractal cities.


Author(s):  
John C. Russ

Observers of nature at scales from microscopic to global have long recognized that few structures are actually described by Euclidean geometry. Mountains are not cones, clouds are not ellipsoids, and surfaces are not planes. Classical geometry allows dimensions of 0 (point), 1 (line), 2 (surface), and 3 (volume). The advent of a new geometry that allows for fractional dimensions between these integer topological values has stirred much interest because it seems to provide a tool for describing many natural objects. As is the case for many new tools, this fractal geometry is subject to some overuse and abuse.A classic illustration of fractal dimension concerns the length of a boundary line, such as the coast of Britain. Measuring maps with different scales, or striding along the coastline with various measuring rods, produces a result that depends on the resolution. More than this is required for the coastline to be fractal, however: It must also be self-similar.


2019 ◽  
Vol 14 ◽  
pp. 155892501987220 ◽  
Author(s):  
Jie Fan ◽  
Xue Yang ◽  
Yong Liu

Wool fiber has a complex hierarchic inner structure. However, like most of the natural things, wool fiber does not have an exactly strict self-similar fractal feature. Here, we calculate the fractal dimension of each hierarchic level of wool fiber using the two-scale dimension method. The obtained fractal dimension of wool fiber in different hierarchic level ranges between 1.37 and 1.47, which is close to that obtained according to the traditional fractal geometry. Thermal property of wool fiber is investigated based on the fractal feature of wool fiber. The result shows that the temperature gradient and the rate of the temperature gradient along the fiber is very slow, suggesting that wool fiber has a good thermal retention property.


2005 ◽  
Vol 1 (1) ◽  
pp. 21-24
Author(s):  
Hamid Reza Samadi

In exploration geophysics the main and initial aim is to determine density of under-research goals which have certain density difference with the host rock. Therefore, we state a method in this paper to determine the density of bouguer plate, the so-called variogram method based on fractal geometry. This method is based on minimizing surface roughness of bouguer anomaly. The fractal dimension of surface has been used as surface roughness of bouguer anomaly. Using this method, the optimal density of Charak area insouth of Hormozgan province can be determined which is 2/7 g/cfor the under-research area. This determined density has been used to correct and investigate its results about the isostasy of the studied area and results well-coincided with the geology of the area and dug exploratory holes in the text area


2021 ◽  
Author(s):  
Nicholas Dudu ◽  
Arturo Rodriguez ◽  
Gael Moran ◽  
Jose Terrazas ◽  
Richard Adansi ◽  
...  

Abstract Atmospheric turbulence studies indicate the presence of self-similar scaling structures over a range of scales from the inertial outer scale to the dissipative inner scale. A measure of this self-similar structure has been obtained by computing the fractal dimension of images visualizing the turbulence using the widely used box-counting method. If applied blindly, the box-counting method can lead to misleading results in which the edges of the scaling range, corresponding to the upper and lower length scales referred to above are incorporated in an incorrect way. Furthermore, certain structures arising in turbulent flows that are not self-similar can deliver spurious contributions to the box-counting dimension. An appropriately trained Convolutional Neural Network can take account of both the above features in an appropriate way, using as inputs more detailed information than just the number of boxes covering the putative fractal set. To give a particular example, how the shape of clusters of covering boxes covering the object changes with box size could be analyzed. We will create a data set of decaying isotropic turbulence scenarios for atmospheric turbulence using Large-Eddy Simulations (LES) and analyze characteristic structures arising from these. These could include contours of velocity magnitude, as well as of levels of a passive scalar introduced into the simulated flows. We will then identify features of the structures that can be used to train the networks to obtain the most appropriate fractal dimension describing the scaling range, even when this range is of limited extent, down to a minimum of one order of magnitude.


2018 ◽  
Vol 13 (1) ◽  
pp. 155892501801300
Author(s):  
Yunlong Shi ◽  
Liang Wang ◽  
Wenhuan Zhang ◽  
Xiaoming Qian

In this paper, thermal and wet comforts of silicone coated windbreaker shell jacket fabrics were studied. Both thermal insulation and evaporative resistance of fabric increased with an increase in coating area due to the barrier effect of the silicone coating layer. Moreover, the coated fabrics with self-similar structures showed different thermal insulation and evaporative resistance under the same total coating area. Fractal theory was used to explain this phenomenon. Optimal thermal-wet comfort properties were obtained when the fractal dimension (D=1.599) was close to the Golden Mean (1.618). When the fractal dimension of coating was lower than 1.599, fabric warmth retention was not high enough. In contrast, fabric evaporative resistance was beyond the value at which people would feel comfortable when the fractal dimension was greater than 1.599.


1989 ◽  
Vol 04 (19) ◽  
pp. 5047-5117 ◽  
Author(s):  
LAURENT NOTTALE

We review in this paper the first results obtained in an attempt at understanding quantum space-time based on a new extension of the principle of relativity and on the geometrical concept of fractals. We present methods for dealing with the nondifferentiability and the infinities of fractals, as a first step towards the definition and intrinsic description of a fractal space. After having recalled that the Heisenberg relations imply a transition of spatial coordinates of a particle to fractal dimension 2 about the de Broglie length λ = ħ/p, it is suggested that a similar transition occurs for temporal coordinates about the de Broglie time τ = ħ/E. We then investigate the hypothesis that the microstructure of space-time is of fractal nature, and that the observed properties of the quantum world at a given resolution result from the smoothing of curvilinear coordinates of such a spacetime projected into classical spacetime. Along this road, we successively study the link of fractal dimension 2 to spin, we give first hints on the expected behavior of families of fractal geodesics, and we exhibit a general class of fractal structures which is assumed to yield a lowest order description of the quantum vacuum. The links between the new approach and both special and general relativity are touched upon. We finally suggest that the anomalous peaks recently observed in the spectra of positrons from supercritical heavy ion collisions may be understood in this context.


2017 ◽  
Vol 826 ◽  
pp. 975-995
Author(s):  
Sergey Alyaev ◽  
Eirik Keilegavlen ◽  
Jan Martin Nordbotten ◽  
Iuliu Sorin Pop

The process of initial ice formation in brine is a highly complex problem. In this paper, we propose a mathematical model that captures the dynamics of nucleation and development of ice inclusions in brine. The primary emphasis is on the interaction between ice growth and salt diffusion, subject to external forcing provided by temperature. Within this setting two freezing regimes are identified, depending on the rate of change of the temperature: a slow freezing regime where a continuous ice domain is formed; and a fast freezing regime where recurrent nucleation appears within the fluid domain. The second regime is of primary interest, as it leads to fractal-like ice structures. We analyse the critical threshold between the slow and fast regimes by identifying the explicit rates of external temperature control that lead to self-similar salt-concentration profiles in the fluid domains. Subsequent heuristic analysis provides estimates of the characteristic length scales of the fluid domains depending on the time-variation of the temperature. The analysis is confirmed by numerical simulations.


Author(s):  
Gennady M. Aldonin ◽  
◽  
Vasily V. Cherepanov ◽  

In domestic and foreign practice, a great deal of experience has been accumulated in the creation of means for monitoring the functional state of the human body. The existing complexes mainly analyze the electrocardiogram, blood pressure and a number of other physiological parameters. Diagnostics is often based on formal statistical data which are not always correct due to the nonstationarity of bioprocesses and without taking into account their physical nature. An urgent task of monitoring the state of the cardiovascular system is the creation of effective algorithms for computer technologies to process biosignals based on nonlinear dynamic models of body systems since biosystems and bioprocesses have a nonlinear nature and fractal structure. The nervous and muscular systems of the heart, the vascular and bronchial systems of the human body are examples of such structures. The connection of body systems with their organization in the form of self-similar fractal structures with scaling close to the “golden ratio” makes it possible to diagnose them topically. It is possible to obtain detailed information about the state of the human body’s bio-networks for topical diagnostics on the basis of the wavelet analysis of biosignals (the so-called wavelet-introscopy). With the help of wavelet transform, it is possible to reveal the structure of biosystems and bioprocesses, as a picture of the lines of local extrema of wavelet diagrams of biosignals. Mathematical models and software for wavelet introscopy make it possible to extract additional information from biosignals about the state of biosystems. Early detection of latent forms of diseases using wavelet introscopy can shorten the cure time and reduce the consequences of disorders of the functional state of the body (FSO), and reduce the risk of disability. Taking into account the factors of organizing the body’s biosystems in the form of self-similar fractal structures with a scaling close to the “golden ratio” makes it possible to create a technique for topical diagnostics of the most important biosystems of the human body.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247133
Author(s):  
Jun Shimizu ◽  
Hiromi Kuwata ◽  
Kazuo Kuwata

Fractal dimensions and characteristic periodicities were evaluated in normal sentences, computer-generated word salads, and word salads from schizophrenia patients, in both Japanese and English, using the random walk patterns of vowels. In normal sentences, the walking curves were smooth with gentle undulations, whereas computer-generated word salads were rugged with mechanical repetitions, and word salads from patients with schizophrenia were unreasonably winding with meaningless repetitive patterns or even artistic cohesion. These tendencies were similar in both languages. Fractal dimensions between normal sentences and word salads of schizophrenia were significantly different in Japanese [1.19 ± 0.09 (n = 90) and 1.15 ± 0.08 (n = 45), respectively] and English [1.20 ± 0.08 (n = 91), and 1.16 ± 0.08 (n = 42)] (p < 0.05 for both). Differences in long-range (>10) periodicities between normal sentences and word salads from schizophrenia patients were predominantly observed at 25.6 (p < 0.01) in Japanese and 10.7 (p < 0.01) in English. The differences in fractal dimension and characteristic periodicities of relatively long-range (>10) presented here are sensitive to discriminate between schizophrenia and healthy mental state, and could be implemented in social robots to assess the mental state of people in care.


Sign in / Sign up

Export Citation Format

Share Document