scholarly journals Depths of anomalous magnetic field sources based on ground and balloon magnetic data

Author(s):  
Yu.P. Tsvetkov ◽  
◽  
K.V. Novikov ◽  
A.A. Ivanov ◽  
S.V. Filippov ◽  
...  
2021 ◽  
Author(s):  
Kirill Kuznetsov ◽  
Kiryukhina Elena ◽  
Bulychev Andrey ◽  
Lygin Ivan

<p>Magnetic surveys are commonly used for solving variety of geotechnical and geological challenges in offshore areas, jointly with a set of other geophysical methods. The most popular technique employed is hydromagnetic surveying with towed magnetometers. One of the most significant challenges encountered during processing of the magnetic data is related to temporal variations of the Earth's magnetic field. Accounting for diurnal magnetic field variations is often done by carrying out differential hydromagnetic surveys, a technique developed in the 1980-s. It is based on simultaneous measurements of the magnetic field using two sensors towed behind the vessel with a given separation. This technique allows to calculate along-course gradient which is free of magnetic field temporal variations. This measurement system resembles a gradiometer, with the distance between two sensors being referred to as the base of the gradiometer. It is possible to calculate anomalous magnetic field by integrating obtained magnetic field gradient. Studies have shown that accuracy of its reconstruction decreases with increasing base of the gradiometer. This becomes most significant when distance between the sensors and sources of magnetic field anomalies is small. This situation occur when the survey area is located in shallow water (i.e. for shallow marine, river or lake surveys).</p><p>An approach for deriving magnetic anomalies and accounting for diurnal variations in differential hydromagnetic surveys based on the frequency (spectral) representation of the measurements was proposed in 1987 [Melikhov, 1987]. This approach utilizes the fact that it is possible to reconstruct the spectrum of magnetic field anomalies along the vessel course from the spectra of measured signals from the first S<sub>1</sub>(ω) and second S<sub>2</sub>(ω) sensors. Assuming that the sensors are located at the same depth, it can be achieved via the following transform:</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.3d3911bac60061487501161/sdaolpUECMynit/12UGE&app=m&a=0&c=ff23bad5ed5181be02f7ef7ab5e8d6e4&ct=x&pn=gepj.elif&d=1" alt="" width="192" height="43"></p><p>where ω - spatial frequency, <em>l</em> - base of the gradiometer, and <em>i</em> - imaginary unit. Assuming that at a single moment in time magnetic field variations equally affect both sensors, resulting Fourier spectrum T(ω) will correspond the spectrum of anomalous magnetic field, free of the magnetic variations. It should be noted that, similar to the along-course gradient integration approach, anomalous magnetic field is restored to a certain accuracy level.</p><p>Estimates made on model examples showed that accuracy of the field reconstruction using this method is comparable to the accuracy levels of modern marine magnetic surveys (±1-3 nT). It could be noted that for gradiometer bases comparable or larger than depths to magnetic anomaly sources, errors of the field reconstruction are significantly lower for the spectral transformation-based approach compared to along-course gradient integration.</p><p>References:</p><p>Melikhov V.R., Bulychev A.A., Shamaro A.M. Spectral method for solving the problem of separating the stationary and variable components of the geomagnetic field in hydromagnetic gradiometric surveys // Electromagnetic research. - Moscow. IZMIRAN, 1987. - P. 97-109. (in Russian)</p><p> </p>


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Maysam Abedi

The presented work examines application of an Augmented Iteratively Re-weighted and Refined Least Squares method (AIRRLS) to construct a 3D magnetic susceptibility property from potential field magnetic anomalies. This algorithm replaces an lp minimization problem by a sequence of weighted linear systems in which the retrieved magnetic susceptibility model is successively converged to an optimum solution, while the regularization parameter is the stopping iteration numbers. To avoid the natural tendency of causative magnetic sources to concentrate at shallow depth, a prior depth weighting function is incorporated in the original formulation of the objective function. The speed of lp minimization problem is increased by inserting a pre-conditioner conjugate gradient method (PCCG) to solve the central system of equation in cases of large scale magnetic field data. It is assumed that there is no remanent magnetization since this study focuses on inversion of a geological structure with low magnetic susceptibility property. The method is applied on a multi-source noise-corrupted synthetic magnetic field data to demonstrate its suitability for 3D inversion, and then is applied to a real data pertaining to a geologically plausible porphyry copper unit.  The real case study located in  Semnan province of  Iran  consists  of  an arc-shaped  porphyry  andesite  covered  by  sedimentary  units  which  may  have  potential  of  mineral  occurrences, especially  porphyry copper. It is demonstrated that such structure extends down at depth, and consequently exploratory drilling is highly recommended for acquiring more pieces of information about its potential for ore-bearing mineralization.


Geophysics ◽  
1984 ◽  
Vol 49 (9) ◽  
pp. 1549-1553 ◽  
Author(s):  
J. O. Barongo

The concept of point‐pole and point‐dipole in interpretation of magnetic data is often employed in the analysis of magnetic anomalies (or their derivatives) caused by geologic bodies whose geometric shapes approach those of (1) narrow prisms of infinite depth extent aligned, more or less, in the direction of the inducing earth’s magnetic field, and (2) spheres, respectively. The two geologic bodies are assumed to be magnetically polarized in the direction of the Earth’s total magnetic field vector (Figure 1). One problem that perhaps is not realized when interpretations are carried out on such anomalies, especially in regions of high magnetic latitudes (45–90 degrees), is that of being unable to differentiate an anomaly due to a point‐pole from that due to a point‐dipole source. The two anomalies look more or less alike at those latitudes (Figure 2). Hood (1971) presented a graphical procedure of determining depth to the top/center of the point pole/dipole in which he assumed prior knowledge of the anomaly type. While it is essential and mandatory to make an assumption such as this, it is very important to go a step further and carry out a test on the anomaly to check whether the assumption made is correct. The procedure to do this is the main subject of this note. I start off by first using some method that does not involve Euler’s differential equation to determine depth to the top/center of the suspected causative body. Then I employ the determined depth to identify the causative body from the graphical diagram of Hood (1971, Figure 26).


2003 ◽  
Vol 21 (3) ◽  
pp. 661-669 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley

Abstract. We examine the residual (measured minus internal) magnetic field vectors observed in Saturn’s magnetosphere during the Pioneer-11 fly-by in 1979, and compare them with those observed during the Voyager-1 and -2 fly-bys in 1980 and 1981. We show for the first time that a ring current system was present within the magnetosphere during the Pioneer-11 encounter, which was qualitatively similar to those present during the Voyager fly-bys. The analysis also shows, however, that the ring current was located closer to the planet during the Pioneer-11 encounter than during the comparable Voyager-1 fly-by, reflecting the more com-pressed nature of the magnetosphere at the time. The residual field vectors have been fit using an adaptation of the current system proposed for Jupiter by Connerney et al. (1981a). A model that provides a reasonably good fit to the Pioneer-11 Saturn data extends radially between 6.5 and 12.5 RS (compared with a noon-sector magnetopause distance of 17 RS), has a north-south extent of 4 RS, and carries a total current of 9.6 MA. A corresponding model that provides a qualitatively similar fit to the Voyager data, determined previously by Connerney et al. (1983), extends radially between 8 and 15.5 RS (compared with a noon-sector magnetopause distance for Voyager-1 of 23–24 RS), has a north-south extent of 6 RS, and carries a total current of 11.5 MA.Key words. Magnetospheric physics (current systems, magnetospheric configuration and dynamics, planetary magnetospheres)


2013 ◽  
Vol 33 (1) ◽  
pp. 121-131
Author(s):  
Novi Dwi Ariani ◽  
Thaqibul Fikri Niyartama ◽  
Nugroho Budi Wibowo

Mapping geophysics research was conducted by geomagnetic method to know anomaly pattern of magnetic pole and to know distribution location and depth of temple gate composing stone in Losari Temple Site by using magnetic data. Data collection used Proton Precessions Magnetometer (PPM) G-856AX by area width of 88 km x 40 km and measurement space of 3 meter used looping method. Field data was corrected by daily variation and IGRF (International Geomagnetics Reference Field) correction and then reduction to pole. The slice modeling was conducted on local anomaly map on height of 6 meter. The result of the local magnetic field anomalies incision then interpolated to get an idea of the spread and depth of rocks making up the fence Losari temple. Local anomaly map shows that anomaly position lies in southwest, southeast, and northeast from main temple. Based from interpolated distribution of magnetic pole anomaly is dominated in depth of 2 meter to 4 meter. 


2021 ◽  
Author(s):  
Lemgharbi Abdenaceur ◽  
Hamoudi Mohamed ◽  
Abtout Abdeslam ◽  
Abdelhamid Bendekken ◽  
Ener Aganou ◽  
...  

<p>In order to understand the spatial and temporal behavior of the Earth's magnetic field, scientists, following C.F. Gauss initiative in 1838 have established observatories around the world. More than 200 observatories aiming to continuously record, the time variations of the magnetic field vector and to maintain the best standard of the accuracy and resolution of the measurements.</p><p>This study focused on the acquisition and analysis of the magnetic data provided by the Algerian magnetic observatory of Tamanrasset (labelled TAM by the International Association of Geomagnetism and Aeronomy). This observatory is located in southern Algeria at 5.53°E longitude, 22.79°N Latitude. Its altitude is 1373 meters above msl. TAM is continuously running since 1932, using old brand variometers, like Mascart and La Cour with photographic recording at the very beginning. Nowadays modern electronic equipment are used in the framework of INTERMAGNET project. Very large geomagnetic database collected over a century is available. We will describe the history and the various improvement of the methods and instrumentation.</p><p>Preliminary analysis of time series of the observatory data allowed to distinguish two kinds of data: the first type, with low resolution, collected between 1932 and 1992. This data set comes from the annual, monthly, daily and hourly means. The second one with high resolution is represented by minutes and seconds sampling rate since 1993 when TAM was integrated to the world observatory network, INTERMAGNET. Part of the second dataset contains many gaps. We try to fill these gaps thanks to mathematical methods. Absolute measurements and repeat station data allow better accuracy in the secular variations and an improved regional model.</p><p>Keywords: TAM observatory, temporal variation, terrestrial magnetic field, secular variations, INTERMAGNET.</p>


2021 ◽  
Author(s):  
Pauline Le Maire ◽  
Denis Thieblemont ◽  
Marc Munschy ◽  
Guillaume Martelet ◽  
Geoffroy Mohn

<p>Continent-Ocean Transitions (COT) and ultra-slow spreading ridges, floored by wide area of exhumed serpentinized mantle, bear strong amplitude magnetic lineations. However, whether these anomalies are linked to inversions of the direction of the magnetization (therefore characterized as isochrones of seafloor spreading) or to structural and lithological contrasts remains an open question. Generally, marine magnetic data acquired at sea surface along profiles, are too low resolution to image the intensity variations of the magnetic field at a kilometric scale. Performing a dense deep tow magnetic survey at a present-day COT or ultra-slow spreading system would be better to determine the sources of the magnetic signal but remains expensive. To go ahead, a valuable alternative to address these questions is to record the magnetic signal on ophiolite representing remnants of COT and oceanic systems sampled in orogenic system. We worked on the Chenaillet Ophiolite (French Alps), which represents a fossil COT or ultra-slow spreading system integrated to the Alpine orogeny. This ophiolite escaped high-pressure metamorphism and has only been weakly deformed during Alpine orogeny, preserving its pre-orogenic structure.</p><p>We performed an UAV magnetic survey using fluxgate magnetometers in complex conditions due to the altitude (> 1800 m), the strong topography variations and the weather conditions (negative temperatures, snow). Despite these difficulties, which highlight the viability of UAV for geophysical measurements, a survey of 20 square kilometers with 219 km of profiling was completed 100 m above ground level. Flight line spacing is 100 m above the ophiolitic basement and 200 m above the sedimentary units. Another magnetic UAV survey was flown with another UAV to map a small area 10 m above ground level. Magnetic anomaly maps were computed after standard processing (e.g., calibration/compensation, temporal variation and regional magnetic field corrections, levelling).</p><p>Our first results evidence well-defined magnetic anomalies clearly linked to serpentinite. This shows that the magnetic signal is of sufficient resolution to contribute to a revision of the cartography of the massif combining geological observations and magnetic data.</p><p>In addition, the magnetic susceptibility was measured on 60 outcrops, to support interpretation.</p><p>In this presentation, we focus on the magnetic acquisition campaigns, processing and 2D/3D interpretations by forward modelling and data inversion. Lastly, two items are discussed: 1) contribution of magnetic UAV surveys for geological mapping; and 2) implication of the results on the Chenaillet massif to discuss the contribution of magnetic mapping to the understanding of the TOC or ultra-slow spreading system.</p>


2020 ◽  
Vol 110 (5) ◽  
pp. 2530-2540 ◽  
Author(s):  
Adam T. Ringler ◽  
Robert E. Anthony ◽  
David C. Wilson ◽  
Abram C. Claycomb ◽  
John Spritzer

ABSTRACT Seismometers are highly sensitive instruments to not only ground motion but also many other nonseismic noise sources (e.g., temperature, pressure, and magnetic field variations). We show that the Alaska component of the Transportable Array is particularly susceptible to recording magnetic storms and other space weather events because the sensors used in this network are unshielded and magnetic flux variations are stronger at higher latitudes. We also show that vertical-component seismic records across Alaska are directly recording magnetic field variations between 40 and 800 s period as opposed to actual ground motion during geomagnetic events with sensitivities ranging from 0.004 to 0.48  (m/s2)/T. These sensitivities were found on a day where the root mean square variation in the magnetic field was 225 nT. Using a method developed by Forbriger (2007, his section 3.1), we show that improving vertical seismic resolution of an unshielded sensor by as much as 10 dB in the 100–400 s period band using magnetic data from a collocated three-component magnetometer is possible. However, due to large spatial variations in Earth’s magnetic field, this methodology becomes increasingly ineffective as the distance between the seismometer and magnetometer increases (no more than 200 km separation). A potential solution to this issue may be to incorporate relatively low-cost magnetometers as an additional environmental data stream at high-latitude seismic stations. We demonstrate that the Bartington Mag-690 sensors currently deployed at Global Seismographic Network sites are not only acceptable for performing corrections to seismic data, but are also capable of recording many magnetic field signals with similar signal-to-noise ratios, in the 20–1000 s period band, as the observatory grade magnetometers operated by the U.S. Geological Survey Geomagnetism Program. This approach would densify magnetic field observations and could also contribute to space weather monitoring by supplementing highly calibrated magnetometers with additional sensors.


Sign in / Sign up

Export Citation Format

Share Document