Characterization of Localization, Ligand Binding, and pH-Dependent Conformational Changes of Two Chemosensory Proteins Expressed in the Antennae of the Japanese Carpenter Ant, Camponotus Japonicus

2020 ◽  
Vol 37 (4) ◽  
pp. 371
Author(s):  
Durige Wen ◽  
Xing Li ◽  
Xiong Geng ◽  
Mitsuhiro Hirai ◽  
Satoshi Ajito ◽  
...  
2011 ◽  
Vol 30 ◽  
pp. 179-185 ◽  
Author(s):  
Paula M. Petrone ◽  
Janetta Dewhurst ◽  
Ruben Tommasi ◽  
Lewis Whitehead ◽  
Andrea K. Pomerantz

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Masaru K. Hojo ◽  
Kenichi Ishii ◽  
Midori Sakura ◽  
Katsushi Yamaguchi ◽  
Shuji Shigenobu ◽  
...  

2018 ◽  
Author(s):  
M. Sharma ◽  
A. C. Rohithaswa

AbstractxCT is a component of heterodimeric amino acids transporter system Xc- that has been known to work at the cross-roads of maintaining neurological processes and regulating antioxidant defense. xCT is a sodium-independent amino acid antiporter, that imports L- cystine and exports L-glutamate in a 1:1 ratio. The transporter has 12 transmembrane domains with intracellular N- and C-termini, which can undergo various conformational changes while switching the ligand accessibilities from intracellular to extracellular site. In the present study, we generated two homology models of human xCT in two distinct conformations: inward facing occluded state and outward facing open state. We investigated the conformational transitions within these two states by employing series of targeted molecular dynamics simulations. Our results indicated the substrate translocation channel composed of transmembrane helices TMs 1, 3, 6, 8, and 10. Further, we analyzed the ligand binding within the intermediate conformations obtained from the transition simulations. We docked anionic L-cystine and L-glutamate within the cavities alone or in combination to assess the two distinct binding scenarios for xCT as antiporter. We also assessed the interactions between the ligand and xCT and observed that ligands bind to similar residues within the channel, and these residues are essential for substrate binding/permeation. In addition, we analyzed the correlations between ligand binding and conformational transition and observed conformations that are representatives for intermediate ligand bound states. The results presented in the study provide insights into the interplay of conformational transition and ligand binding as xCT goes from one probable conformation to another while transporting the ligand. And the data thus adds to the existing evidence of alternating access mechanism pertaining to the functioning of transporters.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


2019 ◽  
Vol 26 (10) ◽  
pp. 743-750 ◽  
Author(s):  
Remya Radha ◽  
Sathyanarayana N. Gummadi

Background:pH is one of the decisive macromolecular properties of proteins that significantly affects enzyme structure, stability and reaction rate. Change in pH may protonate or deprotonate the side group of aminoacid residues in the protein, thereby resulting in changes in chemical and structural features. Hence studies on the kinetics of enzyme deactivation by pH are important for assessing the bio-functionality of industrial enzymes. L-asparaginase is one such important enzyme that has potent applications in cancer therapy and food industry.Objective:The objective of the study is to understand and analyze the influence of pH on deactivation and stability of Vibrio cholerae L-asparaginase.Methods:Kinetic studies were conducted to analyze the effect of pH on stability and deactivation of Vibrio cholerae L-asparaginase. Circular Dichroism (CD) and Differential Scanning Calorimetry (DSC) studies have been carried out to understand the pH-dependent conformational changes in the secondary structure of V. cholerae L-asparaginase.Results:The enzyme was found to be least stable at extreme acidic conditions (pH< 4.5) and exhibited a gradual increase in melting temperature from 40 to 81 °C within pH range of 4.0 to 7.0. Thermodynamic properties of protein were estimated and at pH 7.0 the protein exhibited ΔG37of 26.31 kcal mole-1, ΔH of 204.27 kcal mole-1 and ΔS of 574.06 cal mole-1 K-1.Conclusion:The stability and thermodynamic analysis revealed that V. cholerae L-asparaginase was highly stable over a wide range of pH, with the highest stability in the pH range of 5.0–7.0.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Raghavendar Reddy Sanganna Gari ◽  
Joel José Montalvo‐Acosta ◽  
George R. Heath ◽  
Yining Jiang ◽  
Xiaolong Gao ◽  
...  

AbstractConformational changes in ion channels lead to gating of an ion-conductive pore. Ion flux has been measured with high temporal resolution by single-channel electrophysiology for decades. However, correlation between functional and conformational dynamics remained difficult, lacking experimental techniques to monitor sub-millisecond conformational changes. Here, we use the outer membrane protein G (OmpG) as a model system where loop-6 opens and closes the β-barrel pore like a lid in a pH-dependent manner. Functionally, single-channel electrophysiology shows that while closed states are favored at acidic pH and open states are favored at physiological pH, both states coexist and rapidly interchange in all conditions. Using HS-AFM height spectroscopy (HS-AFM-HS), we monitor sub-millisecond loop-6 conformational dynamics, and compare them to the functional dynamics from single-channel recordings, while MD simulations provide atomistic details and energy landscapes of the pH-dependent loop-6 fluctuations. HS-AFM-HS offers new opportunities to analyze conformational dynamics at timescales of domain and loop fluctuations.


Sign in / Sign up

Export Citation Format

Share Document