scholarly journals Efektivitas Formulasi Spora Bacillus subtilis B12 sebagai Agen Pengendali Hayati Penyakit Hawar Daun Bakteri pada Tanaman Padi

2015 ◽  
Vol 34 (1) ◽  
pp. 21 ◽  
Author(s):  
Wartono Wartono ◽  
Giyanto Giyanto ◽  
Kikin H. Mutaqin

<p>Bacterial leaf blight control in rice (Oryza sativa Lin.) using bactericide is prohibitive, due to its high cost and its negative effect on the environment. Biocontrol when avaible, therefore is the best alternative solution. Bacillus subtilis is a perspective of biocontrol agent to control several plant diseases, because of its ability to produce antimicrobial and produce plant growth promoting substances. This research was aimed to examine the effectiveness of B. subtilis spore formulation by way of seed treatments and foliar sprays, using different frequencies and concentrations, to control bacterial leaf blight disease (BLB) on rice, caused by Xanthomonas oryzae pv. oryzae, and to evaluate its function as plant growth promoter. The experiments were conducted at greenhouse and in the field using factorial design. At the greenhouse experiment, seed treatment and foliar spray, using concentration of 2% produced better result in controlling BLB, and better result on promoting rice plant growth. In the field experiment, application at 2 week interval showed better effect on suppressing the the disease and on increasing yield. Applications of the formulation of B. subtilis B12 spore reduced BLB disease by 21% and potentially increased yield up to 50%.</p>

2014 ◽  
Vol 6 (1) ◽  
pp. 234-238
Author(s):  
Gokil Prasad Gangwar ◽  
A. P. Sinha

The experiment was conducted to evaluate growth promotion of transplanted rice by fungal and bacterial bioagents effective against bacterial leaf blight of rice, under glasshouse conditions. Bioagent formulations (PBA -1, PBA -2, FLP 88, Pf 83, Isolate 40 and T. harzianum) were applied as seed treatment, seedling root dip and foliar spray and compared with chemical treatment and untreated check. All bioagent formulations were significantly effective in increasing number of tillers per hill, root length, total phenolic content in rice leaves, fresh and dry root weight, fresh and dry shoot weight, flag leaf area, grain yield and 1000 grain weight over check. Present study revealed that potential fungal and bacterial bioagents effective against bacterial leaf blight disease of rice, exhibited plant growth promoting activities and resulted 22.38 to 32.08 % increase in grain yield over untreated check, even if there is no disease.


2014 ◽  
Vol 14 (1) ◽  
pp. 57-63
Author(s):  
Andi Khaeruni ◽  
Abdul Rahim ◽  
Syair Syair ◽  
Adriani Adriani

ABSTRACTInduced resistance to bacterial leaf blight disease in rice field by indigenous rhizobacteria.  Bacterial leaf blight is the most important disease on paddy at Southeast Sulawesi. Utilization of biological agents that induce plant resistance is an alternative tool to control bacterial leaf blight disease on paddy. The aim of  the experiment was obtain rhizobacteria that were able to stimulate the growth of paddy plants as well induce plant resistance towards bacterial leaf blight in the field. All experiment units were arranged with a factorial design in a randomized complete block design. The first factor was the rhizobacteria isolates, consisting 4 treatments, i.e: without rhizobacteria (R0), isolate P11a (R1), isolate PKLK5 (IR2), and  mixture P11a and PKLK5 (R3), the second factor is paddy varieties, (V1): IR64 variety, (V2): Cisantana variety. The pathogen was inoculated on leaf when 45 day after crop.  Weekly observation of disease severity, vegetative plant growth (leaf and stem numbers), and yield were conducted. The results showed that the 10 isolates of rhizobacteria tested were able to induce plant resistance toward bacterial leaf blight, stimulated vegetative growth as well as increased yield of paddy plant. Rhizobacteria application could increase the resistance of paddy toward Xanthomonas oryzae pv. oryzae. The application rhizobacteria could increase the vegetative plant growth, application  mixture P11a and PKLK5 isolates showed higher resistance than single application in terms of plant growth and yield, both IR64 and Cisantana varietes


2018 ◽  
Author(s):  
Xiaohui Wang ◽  
Changdong Wang ◽  
Chao Ji ◽  
Qian Li ◽  
Jiamiao Zhang ◽  
...  

AbstractBacillus amyloliquefaciens subsp. plantarum XH-9 is a plant-beneficial rhizobacterium that shows good antagonistic potential against phytopathogens by releasing diffusible and volatile antibiotics, and secreting hydrolytic enzymes. Furthermore, the XH-9 strain possesses important plant growth-promoting characteristics, including nitrogen fixation (7.92 ± 1.05 mg/g), phosphate solubilization (58.67 ± 4.20 μg/L), potassium solubilization (10.07 ± 1.26 μg/mL), and the presence of siderophores (4.92 ± 0.46 μg/mL), indole-3-acetic acid (IAA) (7.76 ± 0.51 μg/mL) and 1-aminocyclopropane-1-carboxylic acid deaminase (ACC-deaminase) (4.67 ± 1.21 nmol/[mg•h]). Moreover, the XH-9 strain showed good capacities for wheat, corn, and chili root colonization, which are critical prerequisites for controlling soil-borne diseases as a bio-control agent. Real-time quantitative polymerase chain reaction experiments showed that the amount of Fusarium oxysporum DNA associated with the XH-9 strain after treatment significantly decreased compared with control group. Accordingly, wheat plants inoculated with the XH-9 strain showed significant increases in the plant shoot heights (14.20%), root lengths (32.25%), dry biomass levels (11.93%), and fresh biomass levels (16.28%) relative to the un-inoculated plants. The results obtained in this study suggest that the XH-9 strain has potential as plant-growth promoter and biocontrol agent when applied in local arable land to prevent damage caused by F. oxysporum and other phytopathogens.ImportancePlant diseases, particularly soilborne pathogens, play a significant role in the destruction of agricultural resources. Although these diseases can be controlled to some extent with crop and fungicides, while these measures increase the cost of production, promote resistance, and lead to environmental contamination, so they are being phased out. Plant growth-promoting rhizobacteria are an alternative to chemical pesticides that can play a key role in crop production by means of siderophore and indole-3-acetic acid production, antagonism to soilborne root pathogens, phosphate and potassium solubilization, and nitrogen fixation. These rhizobacteria can also promote a beneficial change in the microorganism community by significantly reducing its pathogenic fungi component. Their use is fully in accord with the principles of sustainability.


2020 ◽  
Vol 20 (1) ◽  
pp. 78-84
Author(s):  
Nur Prihatiningsih ◽  
Heru Adi Djatmiko ◽  
Puji Lestari

Screening of competent rice root endophytic bacteria to promote rice growth and bacterial leaf blight disease control. This study was aimed to collect isolate endophytic bacterial of rice roots which able to produce IAA, determine the effect of endophytic bacteria application in stimulating rice plant growth, and  evaluate the potential of rice root endophytic bacteria for controlling bacterial leaf blight. This reasearch was carried out at the Screen House, Plant Protection Laboratory, and Agrohorti Laboratory of the Agriculture Faculty, Jenderal Soedirman University. Isolation of rice root endophytic bacteria was carried out by purposive random sampling from several marginal lands. The results showed that 8 isolates of rice root endophytic bacteria were able to produce IAA, ranging from 57.56 to 79.33 ppm and B07 isolate from Serayu produced the highest amount of IAA. The B04 and B07 isolates were contributed to increase the rice plant growth. The application of rice root endophytic bacteria was effective in controlling bacterial leaf blight.


2017 ◽  
Vol 15 (1) ◽  
pp. 10-18
Author(s):  
MAH Khan ◽  
I Hossain ◽  
MU Ahmad ◽  
MSM Chowdhury

Leaf blight of seven varieties of litchi caused by Pseudomonas syringae pv. syringae was surveyed in the nurseries of major litchi growing areas in Bangladesh viz. Rajshahi, Dinajpur, Rangpur, Mymensingh and Khagrachari. The mean level of incidence and severity were 8.58 and 7.88% in Rajshahi, 9.88 and 8.88% in Dinajpur, 8.44 and 7.76% in Rangpur, 6.50 and 6.18% in Mymensingh and 9.00 and 7.98% in Khagrachari. Incidence and severity of bacterial leaf blight disease of litchi varied significantly depending on weather conditions. Correlation studies revealed that bacterial leaf blight disease of litchi seedlings were positively correlated with temperature, rainfall and relative humidity, where temperature and rainfall was the major factor to the variations of both incidence and severity. Antibiotic sensitivity test revealed that among fifteen isolates, most of the isolates of P. syringae pv. syringae collected from litchi were sensitive to Gentamycin and Erythromycin. Under net house condition, six different treatments (i) Gentamycin @ 0.05%, (ii) Erythromycin @ 0.05%, (iii) Doxycycline @ 0.05%,(iv) Copper sulphate @ 0.05%, (v) BAU-Biofungicide @ 2% and (vi) Control were used for controlling bacterial leaf blight of litchi (Variety: China-3). BAU-Biofungicide was found to be superior in controlling bacterial leaf blight of litchi that reduced 33.64% disease incidence and 60.77 % disease severity in 2010-11 and 63.76% disease incidence and 61.40 % disease severity in 2011-12 over control when applied as foliar spray @ 2% followed by Copper sulphate (0.05%) and Erythromycin (0.05%).The Agriculturists 2017; 15(1) 10-18


2020 ◽  
Vol 39 (2) ◽  
pp. 105
Author(s):  
Hanudin Hanudin ◽  
Lia Sanjaya ◽  
Budi Marwoto

<p>Bacterial leaf blight caused by Pseudomonas cichorii is a major disease in chrysanthemum plants almost all over the world. In Indonesia, this pathogen can cause damage to chrysanthemum 10- 60%. Bacteria spread from one plant to another through water droplets from modern irrigation networks as well as conventional irrigation. P. cichorii is a polyphagic pathogen, which infects succulents and others across continents with varying incidence. Symptoms of transmission of this pathogen in each type of plant are always different, and effective control methods have not been found. This article discusses the virulence of pathogens, the incidence of transmission, and recommendations for controlling bacterial leaf blight on chrysanthemums in Indonesia. A search of various references from within and outside the country shows that P. cichorii can be controlled by combining several methods, namely (a) the use of tolerant varieties (Puspita Nusantara, Puspa Kania, Dwina Kencana, Dwina Pelangi, Pasopati, Paras Ratu, and Wastu Kania), (b) technical culture (extracting infected leaves and watering in the morning), and (c) application of synthetic chemical bactericides with active ingredients of hydrogen peroxide and peroxyacetic acid, or biopesticides with active bacterial isolates of the antagonistic bacteria Bacillus subtilis MI600, and B. amyloliquefaciens IN937, and combination of P. fluorescens Pf Irana with Pf Slada-2.</p><p>Keywords: Chrysanthemum, P. chicorii, bacterial leaf blight disease, epidemiology, control</p><p> </p><p><strong>Abstrak</strong></p><p><strong>PENYAKIT HAWAR DAUN BAKTERI (Pseudomonas cichorii (Swingle 1925) (STAPP 1928) PADA TANAMAN KRISAN (Dendranthema grandiflora Tzvelev) DAN UPAYA PENGENDALIANNYA DI INDONESIA</strong></p><p>Hawar daun bakteri yang disebabkan oleh Pseudomonas cichorii merupakan penyakit utama pada tanaman krisan hampir di seluruh penjuru dunia. Di Indonesia, patogen ini dapat menyebabkan kerusakan pada tanaman krisan 10-60%. Bakteri menyebar dari satu tanaman ke tanaman lain melalui tetesan air dari jaringan irigasi modern maupun penyiraman konvensional. P. cichorii merupakan patogen yang bersifat polifag, yang menginfeksi tanaman sukulen dan lainnya di seluruh benua dengan insidensi bervariasi. Gejala penularan patogen ini pada setiap jenis tanaman selalu berbeda, dan belum ditemukan metode pengendalian yang efektif. Artikel ini membahas virulenitas patogen, insidensi penularan, dan rekomendasi pengendalian hawar daun bakteri pada tanaman krisan di Indonesia. Penelusuran dari berbagai referensi dari dalam dan luar negeri menunjukkan P. cichorii dapat dikendalikan dengan memadukan beberapa metode, yaitu (a) penggunaan varietas toleran (Puspita Nusantara, Puspa Kania, Dwina Kencana, Dwina Pelangi, Pasopati, Paras Ratu, dan Wastu Kania), (b) kultur teknis (perompesan daun terinfeksi dan penyiraman pada pagi hari), serta (c) aplikasi bakterisida kimia sintetik berbahan aktif hydrogen peroxide dan peroxyacetic acid, atau biopestisida berbahan aktif isolat bakteri antagonis Bacillus subtilis MI600, dan B. amyloliquefaciens IN937, serta kombinasi P. fluorescens Pf Irana dengan Pf Slada-2.</p><p>Kata kunci: Krisan, P. chicorii, bakteri hawar daun, epidemiologi, pengendalian.</p>


2020 ◽  
Vol 21 (1) ◽  
pp. 14-19
Author(s):  
Praptiningsih Gamawati Adinurani ◽  
Sri Rahayu ◽  
Nurul Fima Zahroh

Mikroba Bacillus subtilis merupakan agen pengendali hayati mempunyai kelebihan sebagai Plant Growth Promoting Rhizobacteria (PGPR) yaitu dapat berfungsi sebagai biofertilizer, biostimulan, biodekomposer dan bioprotektan. Tujuan penelitian mengetahui potensi B. subtilis dalam merombak bahan organik sebagai usaha meningkatkan ketersediaan bahan organik tanah yang semakin menurun. Penelitian menggunakan Rancangan Petak Terbagi dengan berbagai  bahan organik sebagai petak utama (B0 = tanpa bahan organik, B1 = kotoran ayam,  B2 = kotoran kambing, B3 = kotoran sapi) dan aplikasi B.subtilis sebagai anak petak (A0 = 0 cc/L, A1 = 5cc/L, A2 = 10 cc/L, Pengamatan meliputi variabel tinggi tanaman, indeks luas daun, jumlah buah per tanaman, berat buah per tanaman, dan bahan organik tanah. Data pengamatan  dianalisis ragam  menggunakan  Statistical Product and Service Solutions (SPSS) versi 25 dan dilanjutkan dengan uji Duncan untuk mengetahui signifikansi perbedaan antar perlakuan. Hasil penelitian menunjukkan tidak terdapat interaksi antara bahan organik kotoran ternak dan konsentrasi B. subtilis terhadap semua variabel pengamatan. Potensi B. subtilis sangat baik dalam mendekomposisi bahan organik yang ditunjukkan dengan peningkatan bahan organik, dan hasil terbaik pada kotoran  sapi (B3) dan konsentrasi B. subtilis 15 mL/L masing-masing sebesar 46.47 % dan 34.76 %. Variabel pertumbuhan tidak berbeda nyata kecuali tinggi tanaman dengan pertambahan tinggi paling banyak pada pemberian kotoran kambing sebesar 170.69 %.


Sign in / Sign up

Export Citation Format

Share Document