scholarly journals Suppression of thermal degradation for interface between carbon fiber and resin matrix in carbon fiber reinforced thermoplastic using hexagonal boron nitride

2014 ◽  
Vol 122 (1428) ◽  
pp. 732-735 ◽  
Author(s):  
Daisuke SHIMAMOTO ◽  
Yusuke IMAI ◽  
Yuji HOTTA
2009 ◽  
Vol 79-82 ◽  
pp. 409-412 ◽  
Author(s):  
Jin Huan Ma ◽  
Xin Bo Wang ◽  
Bin Li ◽  
Long Nan Huang

An approach to chemical recycling of carbon fiber reinforced epoxy resin cured with amine has been investigated. Amine cured epoxy resin was decomposed totally when it was treated with nitric acid solution under certain conditions. The impacts of nitric acid concentration and decomposition temperature on recycling method were studied with decomposing time and the performance of carbon fiber as indexes. Epoxy resin matrix decomposed entirely after 23hrs at 95°C in the 8mol/L nitric acid solution. Scanning electron microscopy analysis (SEM) and monofilament strength were used to characterize the recycled carbon fibers.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 21
Author(s):  
Min Jun Lee ◽  
Pil Gyu Lee ◽  
Il-Joon Bae ◽  
Jong Sung Won ◽  
Min Hong Jeon ◽  
...  

In this study, a carbon fiber-reinforced thermoplastic composite was fabricated using a new aromatic polyamide (APA) as a matrix. Non-isothermal crystallization behaviors in the cooling process of APA resin (a semi-crystalline polymer) and composite were analyzed by using a differential scanning calorimeter (DSC). To determine the optimum molding conditions, processing parameters such as the molding temperature and time were varied during compression molding of the Carbon/APA composite. The tensile and flexural properties and morphologies of the fabricated composites were analyzed. Molding at 270 °C and 50 MPa for 5 min. showed relatively good mechanical properties and morphologies; thus, this condition was selected as the optimal molding condition. In addition, to enhance the thermal conductivity of the Carbon/APA composite, a study was conducted to add hexagonal boron nitride (h-BN) as a filler. The surface of h-BN was oxidized to increase its miscibility in the resin, which resulted in better dispersity in the APA matrix. In conclusion, a Carbon/APA (h-BN) composite manufactured under optimal molding conditions with an APA resin containing surface-treated h-BN showed a thermal conductivity more than twice that of the case without h-BN.


2015 ◽  
Vol 723 ◽  
pp. 71-75
Author(s):  
Yong Jun Xia ◽  
Wen Ming Mei ◽  
Yu Jing Hao ◽  
Da Ni

As a special lifting device, the lifting pole is widely used in construction of transmission line powers. Due to the special working environment, a new-type lifting pole made of carbon-fiber reinforced resin matrix composites is designed to facilitate transportation and usage. It is shown by comparison of material properties that new materials can greatly reduce structural self-weight on the condition of ensuring mechanical properties. In order to ensure the equipment is used safely and reliably, this paper carries out mechanical calculation and ANSYS finite element analysis by setting up a mechanical model, and the results show that the design is reasonable and accords with national relevant specifications.


2019 ◽  
Vol 37 ◽  
pp. 450-458 ◽  
Author(s):  
Changchun Dong ◽  
Jianxin Zhou ◽  
Xiaoyuan Ji ◽  
Yajun Yin ◽  
Xu Shen

Sign in / Sign up

Export Citation Format

Share Document