scholarly journals INCREASE THE HEAT TRANSFER RATE OF DOUBLE PIPE HEAT EXCHANGER WITH QUADRATIC TURBULATOR (BAFFLE) ATTACHED TWISTED TAPE INSERT

2021 ◽  
Vol 34 (02) ◽  
Author(s):  
Mohammad Sikindar Baba ◽  
◽  
Oddarapu Kalyani ◽  

SINERGI ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 51
Author(s):  
Sudiono Sudiono ◽  
Rita Sundari ◽  
Rini Anggraini

This preliminary investigation studied the effect of circular turbulator vortex generator on heat transfer rate and pressure drop in a circular channel countercurrent double pipe heat exchanger with water working fluid. Increasing the number of circular turbulator yielded increasing heat transfer rate and pressure drop. The problem generated when increased pressure drop occurred in relation to more energy consumption of the water pumping system. Therefore, optimization in circular turbulator number is necessary to minimize the pressure drop about distance length between circular turbulator, tube diameter and thickness, type of material and crystal lattice, as well as the geometrical shape of fluid passage (circular or square). This study applied PVC outer tube and copper alloy inner tube, as well as fiberglass circular turbulator. The optimum results showed that seven parts of circular turbulator increasing heat transfer rate by 30% and pressure drop by 80% compared to that passage in the absence of circular turbulator at cool water debit of 7 L/min.


2021 ◽  
Vol 1973 (1) ◽  
pp. 012113
Author(s):  
Zomorrod Ahmed Salman ◽  
Zena Khalefa Kadhim ◽  
Kamil Abdulhussein khalaf ◽  
Hassanein Ali Kamil

2013 ◽  
Vol 284-287 ◽  
pp. 908-914
Author(s):  
King Leung Wong ◽  
Wen Lih Chen ◽  
Li Wen Po

Log mean temperature difference (LMTD) method neglecting the influence of heat radiation is conventionally used to calculate the total heat transfer rate of heat exchangers. From recent investigation of a single-pipe heat exchanger in some practical situations, it is found that the total heat transfer rate error of single-pipe heat exchanger obtained by LMTD method is up to 40% in the situation of oxidized metal heat exchanger with higher surface emissivity located in ambient air with low heat convection coefficient. A log mean heat transfer rate (LMHTR) method considering heat radiation has been developed to calculate the total heat transfer rate of a single-pipe heat exchanger and more accurate results can be achieved. It is also found in the present investigation that LMTD method is also not suitable to apply to non-insulated double-pipe heat exchangers and a more accurate LMHTR method considering heat radiation is developed to obtain the more reasonable results.


2018 ◽  
Vol 144 ◽  
pp. 04012
Author(s):  
Akarsh Kumar ◽  
Ujjawal Sureka ◽  
Shiva Kumar

In the present study numerical analysis of enhancement in heat transfer characteristics in a double pipe heat exchanger is studied using a holed twisted tape.The twisted tape with a constant twist ratio is inserted in a double pipe heat exchanger. Holes of diameter 1mm, 3 mm and 5 mm were drilled at regular pitch throughout the length of the tape. Numerical modeling of a double pipe heat exchanger with the holed twisted tape was constructed considering hot fluid flowing in the inner pipe and cold fluid through the annulus.Simulation was done for varied mass flow rates of hot fluid in the turbulent condition keeping the mass flow rate of cold fluid being constant. Thermal properties like Outlet temperatures, Nusselt number, overall heat transfer coefficient, heat transfer rate and pressure drop were determined for all the cases. Results indicated that normaltwisted tape without holes performed better than the bare tube. In the tested range of mass flow rates the average Nusselt number and heat transfer rate were increased by 85% and 34% respectively. Performance of Twisted tape with holes was slightly reduced than the normal twisted tape and it deteriorated further for higher values hole diameter. Pressure drop was found to be higher for the holed twisted tape than the normal tape.


2006 ◽  
Vol 129 (3) ◽  
pp. 265-272 ◽  
Author(s):  
J. R. Balikowski ◽  
J. C. Mollendorf

Phase change materials (PCMs) are used in applications where temperature regulation is important because they absorb and release a large amount of energy at a fixed temperature. In the experimental part of this investigation, PCM was placed in the annular region of a double-pipe heat exchanger with water circulated in the inside pipe. Experiments were performed in which the PCM would absorb (charge) and then release (discharge) energy at various temperatures and water flows. Two materials, Climsel 28 (C28) by Climator and microencapsulated Thermasorb 83 (TY83) by Outlast Technologies, were each tested in smooth and spined annuli to observe which configuration facilitated heat transfer. The latent heats and thermal conductivities of C28 and TY83 are 126kJ∕kg and 186kJ∕kg and 0.6W∕m∕°C and 0.15W∕m∕°C, respectively. The experimental data were analyzed to verify which PCM transferred more heat. The effect of different water flow rates on the heat transfer rate was also examined. In the theoretical part of this investigation, heat transfer theory was applied to C28 in the smooth-piped heat exchanger in order to better understand the phase change process. The presence of spined fins in the phase change material accelerated charging and discharging due to increased fin contact with the outer layers of the PCM. The spined heat exchanger charged and discharged in 180min and 120min, respectively, whereas the temperature in the smooth heat exchanger remained below the fully charged/fully discharged asymptote by about 3°C and thus failed to fully charge or fully discharge. Also, higher water flows increased heat transfer between the PCM and water. TY83 in the spined heat exchanger transferred more heat and did it faster than C28 in the spined heat exchanger. The heat transfer rate from the water to TY83 while charging was 25% greater during the transient period than in C28. While discharging, the heat transfer from TY83 to the water was about 20% greater than in C28. There was generally good agreement (±1.5°C) between theory and experimental data of C28 in the smooth-piped heat exchanger in terms of the trends of the temperature responses. The differences are expected to be a result of approximations in boundary conditions and uncertainties in how the temperature variation of the specific heat is formulated.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1656 ◽  
Author(s):  
Mehdi Ghalambaz ◽  
Hossein Arasteh ◽  
Ramin Mashayekhi ◽  
Amir Keshmiri ◽  
Pouyan Talebizadehsardari ◽  
...  

This study investigated the laminar convective heat transfer and fluid flow of Al2O3 nanofluid in a counter flow double-pipe heat exchanger equipped with overlapped twisted tape inserts in both inner and outer tubes. Two models of the same (co-swirling twisted tapes) and opposite (counter-swirling twisted tapes) angular directions for the stationary twisted tapes were considered. The computational fluid dynamic simulations were conducted through varying the design parameters, including the angular direction of twisted tape inserts, nanofluid volume concentration, and Reynolds number. It was found that inserting the overlapped twisted tapes in the heat exchanger significantly increases the thermal performance as well as the friction factor compared with the plain heat exchanger. The results indicate that models of co-swirling twisted tapes and counter-swirling twisted tapes increase the average Nusselt number by almost 35.2–66.2% and 42.1–68.7% over the Reynolds number ranging 250–1000, respectively. To assess the interplay between heat transfer enhancement and pressure loss penalty, the dimensionless number of performance evaluation criterion was calculated for all the captured configurations. Ultimately, the highest value of performance evaluation criterion is equal to 1.40 and 1.26 at inner and outer tubes at the Reynolds number of 1000 and the volume fraction of 3% in the case of counter-swirling twisted tapes model.


Sign in / Sign up

Export Citation Format

Share Document