Paleoenvironmental significance of microbial mat-related structures and ichnofaunas in an Ordovician mixed-energy estuary, Áspero Formation of Santa Victoria Group, northwestern Argentina

2020 ◽  
Vol 90 (4) ◽  
pp. 364-388 ◽  
Author(s):  
María Duperron ◽  
Roberto Adrián Scasso

ABSTRACT The study on a unique set of outstandingly preserved sedimentary surface textures (SSTs) found in the late Tremadocian Áspero Formation of northwestern Argentina, coupled with the sedimentological and ichnological analysis, indicate that they were formed in the intertidal to supratidal setting of a mixed-energy estuary recording storm and tide sedimentation. We recognize seven types of SSTs: probably biotic microbial mat-related SSTs (Kinneyia, elephant skin, exfoliating sandy laminae), abiotic SSTs (elliptical scours and convex parallel ridges type I “wrinkle marks” sensuAllen 1985), and problematic (convex parallel ridges type II and dot matrix texture). Elliptical scours and convex parallel ridges type I show features which indicate reworking of a cohesive sandy substrate in an intertidal or supratidal setting. Abundance of biotic SSTs with specific associated trace fossils reflect matground development and mat-grazing ichnofaunas, indicating the suppression of intense, penetrative bioturbation due to intense physicochemical stress. The “dot matrix” texture, described here for the first time, consists of a regular horizontal network of millimeter-scale pits; it appears associated with exfoliating sandy laminae, probably reflecting a mat-related origin. Three facies associations are defined through paleoenvironmental analysis. Facies association 1 is dominated by high-energy sandy and bioclastic storm deposits with tidal flat facies, and corresponds to the outer bay of a mixed-energy estuary; highly impoverished Cruziana assemblages and distal expressions of the Skolithos Ichnofacies reflect high energy and sedimentation rate. Facies association 2 shows tidal-channel and tidal-flat facies with subordinated storm deposits, representing the middle bay; impoverished Cruziana assemblages dominated by simple facies-crossing structures, with high-density monogeneric opportunistic suites, evidence physicochemical stress associated with subaerial exposure, frequent episodic deposition, high water turbidity, and/or brackish water conditions in these relatively sheltered tidal flats. Facies association 3 is formed by interdistributary-bay deposits with intercalation of channel-fill deposits in the upper part, and represents the river-dominated bay-head delta; low degrees of bioturbation in fine-grained facies indicate brackish- to fresh-water conditions. SSTs are found in tidal flat facies of facies association 2; they indicate an intertidal to supratidal environment subject to localized conditions of intense physicochemical stress. The paleoenvironmental interpretation of SSTs converges with the one performed through sedimentological and ichnological analysis, producing a robust and more detailed paleoenvironmental model for the Áspero Formation. Our study highlights the use of SSTs as a tool for supporting and refining paleoenvironmental analysis.

2015 ◽  
Vol 45 (suppl 1) ◽  
pp. 13-27 ◽  
Author(s):  
Roberto Cesar de Mendonça Barbosa ◽  
Afonso César Rodrigues Nogueira ◽  
Fábio Henrique Garcia Domingos

ABSTRACTGlaciotectonic features studied in the siliciclastic deposits of Cabeças Formation, Upper Devonian, represent the first evidence of Famennian glaciation in Southeastern Parnaíba Basin, Brazil. Outcrop-based stratigraphic and facies analyses combined with geometric-structural studies of these deposits allowed defining three facies association (FA). They represent the advance-retreat cycle of a glacier. There are: delta front facies association (FA1) composed of massive mudstone, sigmoidal, medium-grained sandstone with cross-bedding and massive conglomerate organized in coarsening- and thickening-upward cycles; subglacial facies association (FA2) with massive, pebbly diamictite (sandstone, mudstone and volcanic pebbles) and deformational features, such as intraformational breccia, clastic dikes and sills of diamictite, folds, thrust and normal faults, sandstone pods and detachment surface; and melt-out delta front facies associations (FA3), which include massive or bedded (sigmoidal cross-bedding or parallel bedding) sandstones. Three depositional phases can be indicated to Cabeças Formation: installation of a delta system (FA1) supplied by uplifted areas in the Southeastern border of the basin; coastal glacier advance causing tangential substrate shearing and erosion (FA1) in the subglacial zone (FA2), thus developing detachment surface, disruption and rotation of sand beds or pods immersed in a diamicton; and retreat of glaciers accompanied by relative sea level-rise, installation of a high-energy melt-out delta (FA3) and unloading due to ice retreat that generates normal faults, mass landslide, folding and injection dykes and sills. The continuous sea-level rise led to the deposition of fine-grained strata of Longá Formation in the offshore/shoreface transition in the Early Carboniferous.


2021 ◽  
Vol 151 (2) ◽  
pp. 159
Author(s):  
Emese M. Bordy ◽  
Orsolya Sztanó

Two levels of volcaniclastics, comprising conglomerates, sandstones and mudstones, are interbedded with upper middle Miocene (upper Badenian) andesite pyroclastics near the Hungarian-Slovakian border in the distal region of the Central Slovakian Neogene Volcanic Field. Based on the field sedimentological investigations, the facies of the volcaniclastics (e.g., lateral and vertical grain size changes, sedimentary structures, textures, clast composition), their geometry and field relationships are documented herein with the aim of reconstructing the depositional environment. The silica-cemented volcaniclastics are mostly andesite clasts with only ~ 5% being granitoid, quarzitic, and tuff clasts as well as charred fossil wood fragments. The coarse-grained facies association includes crudely stratified, tabular or lenticular, clast-supported pebble-cobble conglomerates with erosive basal surfaces, b-axis imbrication, alternating with sets of cross-bedding. The fine-grained facies association comprises cross-bedded pebbly to medium-grained sandstone and lenses of tuffaceous clayey siltstone with rare horizontal lamination and water-escape structures. Rip-up mudstone clasts, with diametre up to 1 m, are present in both facies associations, revealing the co-existence of abandoned silty palaeo-channel plugs. Facies associations are arranged in several 0.5-4-m-thick, fining-upwards successions that likely formed in shallow channels as downstream- to laterally accreting longitudinal bars, extensive gravel sheets and bars that migrated in peak flow during floods. Palaeocurrent indicators (i.e., clast imbrication, direction of planar cross-bedding, orientation of petrified wood logs) show bedload transport by traction currents, initially towards ~S, and later towards ~W. Intermittently debris flows also occurred. Cross-bedded sandstones formed as in-channel transverse bars during medium/low discharge. Variation of grain size shows frequent discharge fluctuations during permanently wet conditions in the late Badenian. The 4-5-m-deep, low-sinuosity channels were part of a high-energy, gravel-bed braided-river system on the south-eastern foothills of the Lysec palaeo-volcano. Here, pyroclastics were reworked and redeposited as volcaniclastics during inter-eruption, high-discharge episodes.


2003 ◽  
Vol 28 ◽  
Author(s):  
Charu C. Pant ◽  
Pradeep K. Goswami

The diamictite bearing Neoproterozoic Blaini Formation constitutes a significant lithostratigraphic unit of the Lesser Himalayan sedimentary pile. These diamictite bearing horizons have implication for the genetic evolution of the Krol-belt. Detailed lithofacies and palaeocurrent analyses of the Blaini Formation suggest that the sediments belong to two distinct facies associations. These are: Strom Dominated Facies Association and Tide Dominated Facies Association. The Strom dominated Facies Association overlies a transgressive lag deposit and comprises offshore, offshore transition and subtidal facies. The ride Dominated Facies Association on the other hand comprises intertidal to supratidal facies. The Blaini succession in the Nainital area overlies the Nagthat siliciclastics deposited in a barrier island set-up having a sharp to erosional contact. The Nagthat Sea gave way to shelf sedimentation of the Blaini times. The high-energy-tide-storm condition of sedimentation in the basin had witnessed mode rate to low energy conditions intermittently, wherein diamictites were emplaced through down slope re-sedimentation of cohesive debris flow. The debris was originated by intermixing of extra-basinal and intra-basinal clasts along with hinterland sediments, which were transported in response to some tectonic adjustments during the terminal stages of Blaini sedimentation. Subsequent tectonic stability and quiescence gave way to thick stromatolitic carbonate succession during the Krol times. The Krol-belt as such is evolved in three distinct cycles of sedimentation, distinguished as the Jaunsar-Simla, the Blaini and the Krol cycles.


2020 ◽  
Vol 5 (8) ◽  
pp. 870-876
Author(s):  
Shettima Bukar ◽  
Mohammed Bukar ◽  
Asabe Kuku ◽  
Bintu Shettima ◽  
Ishaku H. Kamale

This research was carried out in the Gongola Sub-basin of the Northern Benue Trough aimed at deciphering of the paleo-depositional environment of the Yolde Formation based on facies on facies analysis. Six lithofacies were identified to include trough crossbedded sandstone facies (St), massive bedded sandstone facies (Sm), planar crossbedded sandstone facies (Sp), ripple laminated sandstone facies (Sr), parallel sandstone facies (Sl) and mudstone facies (Fm). These build into two facies association of fluvial channel and tidally influenced fluvial channel facies associations. The fluvial successions typical characterizes the lower stratigraphic horizons and their contained dominances of trough crossbedded sandstone facies with high channel to overbank facies and contained mud-clast reflecting deep, high energy braided river system. The submergences of these channels by surging sea level rise generated the tidally influenced fluvial facies association and this package characteristically defines the upper interval stratigraphic architecture of this formation, displaying occasional bi-directional current system and abundant marine ichnogenera. This architectural symmetry is reflective of an incised valley fills, developing as a consequence of Cenomanian transgressive phase induced by the mid-Cretaceous global marine transgression.       


Author(s):  
B. Shettima ◽  
M. Bukar ◽  
A. Kuku ◽  
H. I. Kamale ◽  
B. Shettima

This research aims to evaluate the facies and facies association of the Yolde Formation at Kware stream in the Gongola Sub-basin of the Northern Benue Trough with objective of characterizing its paleodepositional environment. Six lithofacies consisting of trough crossbedded sandstone facies (St), massive bedded sandstone facies (Sm), planar crossbedded sandstone facies (Sp), ripple laminated sandstone facies (Sr), parallel sandstone facies (Sl) and mudstone facies (Fm) defining its stratal packages were skewed into distinctive assemblages of flaser, wavy and lenticular bedding. This present a fining upward signature with facies association typical of tidal flat system. This is evident of a coastal progradation with sequences reflecting migration of a supra-tidal mudflat over intertidal mixed-flat zone which progressively superposed subtidal sandflats. This is indicative of a coastal shoreline with a relatively progradational phase within the net transgressive regional framework of the Cretaceous Yolde Formation.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
V. V. Vien ◽  
H. N. Long ◽  
A. E. Cárcamo Hernández

Abstract We propose a renormalizable $$B-L$$B-L Standard Model (SM) extension based on $$S_3$$S3 symmetry which successfully accommodates the observed fermion mass spectra and flavor mixing patterns as well as the CP violating phases. The small masses for the light active neutrinos are generated through a type I seesaw mechanism. The obtained physical parameters in the lepton sector are well consistent with the global fit of neutrino oscillations (Esteban et al. in J High Energy Phys 01:106, 2019) for both normal and inverted neutrino mass orderings. The model also predicts effective neutrino mass parameters of $${\langle m_{ee}\rangle }= {1.02\times 10^{-2}}\,{\mathrm {eV}},\, m_{\beta }= {1.25}\times 10^{-2}\,{\mathrm {eV}}$$⟨mee⟩=1.02×10-2eV,mβ=1.25×10-2eV for normal hierarchy (NH) and $${\langle m_{ee}\rangle } ={5.03}\times 10^{-2}\, {\mathrm {eV}},\, m_{\beta } ={5.05}\times 10^{-2}\, {\mathrm {eV}}$$⟨mee⟩=5.03×10-2eV,mβ=5.05×10-2eV for inverted hierarchy (IH) which are all well consistent with the future large and ultra-low background liquid scintillator detectors which has been discussed in Ref. (Zhao et al. in Chin Phys C 41(5):053001, 2017) or the limit of the effective neutrino mass can be reached by the planning of future experiments. The model results are consistent with and successfully accommodate the recent experimental values of the physical observables of the quark sector, including the six quark masses, the quark mixing angles and the CP violating phase in the quark sector.


2009 ◽  
Vol 60 (5) ◽  
pp. 397-417 ◽  
Author(s):  
Crina Miclăuş ◽  
Francesco Loiacono ◽  
Diego Puglisi ◽  
Dorin Baciu

Eocene-Oligocene sedimentation in the external areas of the Moldavide Basin (Marginal Folds Nappe, Eastern Carpathians, Romania): sedimentological, paleontological and petrographic approachesThe Marginal Folds Nappe is one of the most external tectonic units of the Moldavide Nappe System (Eastern Carpathians), formed by Cretaceous to Tertiary flysch and molasse deposits, piled up during the Miocene closure of the East Carpathian Flysch basin, cropping out in several tectonic half-windows, the Bistriţa half-window being one of them. The deposits of this tectonic unit were accumulated in anoxic-oxic-anoxic conditions, in a forebulge depozone (sensuDeCelles & Giles 1996), and consist of a pelitic background sporadically interrupted by coarse-grained events. During the Late Eocene the sedimentation registered a transition from calcareous (Doamna Limestones) to pelitic (Bisericani Beds) grading to Globigerina Marls at the Eocene-Oligocene boundary, and upward during the Oligocene in deposits rich in organic matter (Lower Menilites, Bituminous Marls, Lower and Upper Dysodilic Shales) with coarsegrained interlayers. Seven facies associations were recognized, and interpreted as depositional systems of shallow to deeper water on a ramp-type margin. Two mixed depositional systems of turbidite-like facies association separated by a thick pelitic interval (Bituminous Marls) have been recognized. They were supplied by a "green schists" source area of Central Dobrogea type. The petrography of the sandstone beds shows an excellent compositional uniformity (quartzarenite-like rocks), probably representing a first cycle detritus derived from low rank metamorphic sources, connected with the forebulge relief developed on such a basement. The sedimentation was controlled mainly by different subsidence of blocks created by extensional tectonic affecting the ramp-type margin of the forebulge depozone.


2020 ◽  
Vol 8 ◽  
Author(s):  
Ning Ma ◽  
Meng Chen ◽  
Ce Yang ◽  
Shang Lu ◽  
Xie Zhang ◽  
...  

We report high-energy, high-efficiency second harmonic generation in a near-infrared all-solid-state burst-mode picosecond laser at a repetition rate of 1 kHz with four pulses per burst using a type-I noncritical phase-matching lithium triborate crystal. The pulses in each burst have the same time delay ( ${\sim}1~\text{ns}$ ), the same pulse duration ( ${\sim}100~\text{ps}$ ) and different relative amplitudes that can be adjusted separately. A mode-locked beam from a semiconductor saturable absorber mirror is pulse-stretched, split into seed pulses and injected into a Nd:YAG regenerative amplifier. After the beam is reshaped by aspheric lenses, a two-stage master oscillator power amplifier and 4f imaging systems are applied to obtain a high power of ${\sim}100~\text{W}$ . The 532 nm green laser has a maximum conversion efficiency of 68%, an average power of up to 50 W and a beam quality factor $M^{2}$ of 3.5.


2018 ◽  
Vol 619 ◽  
pp. A114 ◽  
Author(s):  
V. F. Suleimanov ◽  
J. Poutanen ◽  
K. Werner

Some thermonuclear (type I) X-ray bursts at the neutron star surfaces in low-mass X-ray binaries take place during hard persistent states of the systems. Spectral evolution of these bursts is well described by the atmosphere model of a passively cooling neutron star when the burst luminosity is high enough. The observed spectral evolution deviates from the model predictions when the burst luminosity drops below a critical value of 20–70% of the maximum luminosity. The amplitude of the deviations and the critical luminosity correlate with the persistent luminosity, which leads us to suggest that these deviations are induced by the additional heating of the accreted particles. We present a method for computation of the neutron star atmosphere models heated by accreted particles assuming that their energy is released via Coulomb interactions with electrons. We computed the temperature structures and the emergent spectra of the atmospheres of various chemical compositions and investigate the dependence of the results on the velocity of accreted particles, their temperature and the penetration angle. We show that the heated atmosphere develops two different regions. The upper one is the hot (20–100 keV) corona-like surface layer cooled by Compton scattering, and the deeper, almost isothermal optically thick region with a temperature of a few keV. The emergent spectra correspondingly have two components: a blackbody with the temperature close to that of the isothermal region and a hard Comptonized component (a power law with an exponential decay). Their relative contribution depends on the ratio of the energy dissipation rate of the accreted particles to the intrinsic flux from the neutron star surface. These spectra deviate strongly from those of undisturbed, passively cooling neutron star atmospheres, with the main differences being the presence of a high-energy tail and a strong excess in the low-energy part of the spectrum. They also lack the iron absorption edge, which is visible in the spectra of undisturbed low-luminosity atmospheres with solar chemical composition. Using the computed spectra, we obtained the dependences of the dilution and color-correction factors as functions of relative luminosities for pure helium and solar abundance atmospheres. We show that the helium model atmosphere heated by accretion corresponding to 5% of the Eddington luminosity describes well the late stages of the X-ray bursts in 4U 1820−30.


Sign in / Sign up

Export Citation Format

Share Document