EVOLUTION OF A BRAIDED RIVER SYSTEM: THE SALT WASH MEMBER OF THE MORRISON FORMATION (JURASSIC) IN SOUTHERN UTAH

Author(s):  
JOHN W. ROBINSON ◽  
PETER J. McCABE
2018 ◽  
Vol 5 ◽  
pp. 117-129 ◽  
Author(s):  
Spencer Lucas

Most study of the Upper Jurassic Morrison Formation has focused on its spectacular and extensive outcrops on the southern Colorado Plateau. Nevertheless, outcrops of the Morrison Formation extend far off the Colorado Plateau, onto the southern High Plains as far east as western Oklahoma. Outcrops of the Morrison Formation east of and along the eastern flank of the Rio Grande rift in north-central New Mexico (Sandoval, Bernalillo, and San­ta Fe Counties) are geographically intermediate between the Morrison Formation outcrops on the southeastern Colorado Plateau in northwestern New Mexico and on the southern High Plains of eastern New Mexico. Previous lithostratigraphic correlations between the Colorado Plateau and High Plains Morrison Formation outcrops using the north-central New Mexico sections encompassed a geographic gap in outcrop data of about 100 km. New data on previously unstudied Morrison Formation outcrops at Placitas in Sandoval County and south of Lamy in Santa Fe County reduce that gap and significantly add to stratigraphic coverage. At Placitas, the Morrison Formation is about 141 m thick, in the Lamy area it is about 232 m thick, and, at both locations, it consists of the (ascending) sandstone-dominated Salt Wash Member, mudstone-dominated Brushy Basin Member, and sandstone-dominat­ed Jackpile Member. Correlation of Morrison strata across northern New Mexico documents the continuity of the Morrison depositional systems from the Colorado Plateau eastward onto the southern High Plains. Along this transect, there is significant stratigraphic relief on the base of the Salt Wash Member (J-5 unconformity), the base of the Jackpile Member, and the base of the Cretaceous strata that overlie the Morrison Formation (K unconfor­mity). Salt Wash Member deposition was generally by easterly-flowing rivers, and this river system continued well east of the Colorado Plateau. The continuity of the Brushy Basin Member, and its characteristic zeolite-rich clay facies, onto the High Plains suggests that localized depositional models (e.g., “Lake T’oo’dichi’) need to be re-eval­uated. Instead, envisioning Brushy Basin Member deposition on a vast muddy floodplain, with some localized lacustrine and palustrine depocenters, better interprets its distribution and facies.


Author(s):  
Mustafa Kemal Cambazoglu ◽  
Cheryl Ann Blain

The aim of this study is to construct a modeling system that will assist flood risk management strategies in a coastal plain braided river system. The model configuration consists of a hydrodynamic model (ADCIRC) of the river basin that receives tidal forcing at the open boundary and river discharge forcing at upstream flux boundary. An unstructured mesh model resolving the Pearl River channels at higher resolution from the coastline to approximately 75km inland to upstream reaches of the river has been constructed. The modeling system produces water levels and currents throughout the Lower Pearl River Basin. Initial sensitivity analysis efforts on the channel model include consideration of low-flow, average-flow, and high-flow scenarios. Model results were found to be slightly sensitive to slope of river channels and bottom friction to control stability in predictions. The model results were shown to be highly sensitive to the bathymetry of the model that controls the discharge capacity of the narrow river channels and the channel model resulted in elevated currents and water levels under high flow conditions. A channel discharge capacity analysis was conducted and the results showed the need to construct a floodplain mesh around the channel model with more realistic bathymetry and topography so that the flooding scenarios could be modeled with wetting and drying capability of ADCIRC. An initial attempt to develop such a floodplain mesh has been made with preliminary results and more comprehensive validation of the developed floodplain modeling system will extend to reproducing events associated with the historical Hurricane Isaac that impacted the region in 2012. This modeling system will provide an important tool to decision makers that could be used in future flood risk management and mitigation efforts.


2016 ◽  
Vol 51 ◽  
pp. 11-26 ◽  
Author(s):  
Ashok Sigdel ◽  
Tetsuya Sakai

Fluvial sediments of the Siwalik successions in the Himalayan Foreland Basin are one of the most important continental archives for the history of Himalayan tectonics and climate change during the Miocene Period. This study reanalyzes the fluvial facies of the Siwalik Group along the Karnali River, where the large paleo-Karnali River system is presumed to have flowed. The reinterpreted fluvial system comprises fine-grained meandering river (FA1), flood-flow dominated meandering river with intermittent appearance of braided rivers (FA2), deep and shallow sandy braided rivers (FA3, FA4) to gravelly braided river (FA5) and finally debris-flow dominated braided river (FA6) facies associations, in ascending order. Previous work identified sandy flood-flow dominated meandering and anastomosed systems, but this study reinterprets these systems as a flood-flow dominated meandering river system with intermittent appearance of braided rivers, and a shallow sandy braided system, respectively. The order of the appearance of fluvial depositional systems in the Karnali River section is similar to those of other Siwalik sections, but the timing of the fluvial facies changes differs. The earlier appearance (3-4 Ma) of the flood-flow dominated meandering river system in the Karnali River section at about 13.5 Ma may have been due to early uplift of the larger catchment size of the paleo-Karnali River which may have changed the precipitation pattern i.e. intensification of the Indian Summer Monsoon. The change from a meandering river system to a braided river system is also recorded 1 to 3 Ma earlier than in other Siwalik sections in Nepal. Differential and diachronous activities of the thrust systems could be linked to change in catchment area as well as diachronous uplift and climate, the combination of which are major probable causes of this diachronity.


2020 ◽  
Vol 90 (9) ◽  
pp. 1175-1197
Author(s):  
Anne C. Fetrow ◽  
Kathryn E. Snell ◽  
Russell V. Di Fiori ◽  
Sean P. Long ◽  
Joshua W. Bonde

ABSTRACT Terrestrial sedimentary archives record critical information about environment and climate of the past, as well as provide insights into the style, timing, and magnitude of structural deformation in a region. The Cretaceous Newark Canyon Formation, located in central Nevada, USA, was deposited in the hinterland of the Sevier fold–thrust belt during the North American Cordilleran orogeny. While previous research has focused on the coarser-grained, fluvial components of the Newark Canyon Formation, the carbonate and finer-grained facies of this formation remain comparatively understudied. A more complete understanding of the Newark Canyon Formation provides insights into Cretaceous syndeformational deposition in the Central Nevada thrust belt, serves as a useful case study for deconvolving the influence of tectonic and climatic forces on sedimentation in both the North American Cordillera and other contractional orogens, and will provide a critical foundation upon which to build future paleoclimate and paleoaltimetry studies. We combine facies descriptions, stratigraphic measurements, and optical and cathodoluminescence petrography to develop a comprehensive depositional model for the Newark Canyon Formation. We identify six distinct facies that show that the Newark Canyon Formation evolved through four stages of deposition: 1) an anastomosing river system with palustrine interchannel areas, 2) a braided river system, 3) a balance-filled, carbonate-bearing lacustrine system, and 4) a second braided river system. Although climate undoubtedly played a role, we suggest that the deposition and coeval deformation of the synorogenic Newark Canyon Formation was in direct response to the construction of east-vergent contractional structures proximal to the type section. Comparison to other contemporary terrestrial sedimentary basins deposited in a variety of tectonic settings provides helpful insights into the influences of regional tectonics, regional and global climate, catchment characteristics, underlying lithologies, and subcrop geology in the preserved sedimentary record.


CATENA ◽  
2015 ◽  
Vol 126 ◽  
pp. 86-97 ◽  
Author(s):  
Nico Bätz ◽  
Eric P. Verrecchia ◽  
Stuart N. Lane

2015 ◽  
Vol 1 (2) ◽  
Author(s):  
Sugeng Sapto Surjono ◽  
Mohd Shafeea Leman ◽  
Kamal Roslan Mohamed ◽  
Che Aziz Ali

Conglomeratic rocks in East Johor are found in the separately three formations that are the Murau, Tanjung Leman and Linggiu Formations. The Murau Formation is characterized by cobble to boulder grained breccia with very angular to angular and disorganized clasts. It was deposited by fan-delta system in the sub-aerial to shallow marine environment. The Tanjung Leman Formation consists of pebble to cobble grained conglomerate with rounded to subrounded and organized clasts. It was deposited by braided river system in the sub-aerial environment. Both formations outcropped in eastern coastal of Johor. The rudaceous rocks of the Linggiu Formation consist of pebble to cobble-sized clasts with sub angular and disorganized texture. It present as subordinate rocks within sandstone dominant in the central part of East Johor and was deposited by debris flows in the shallow marine environment. All these rudaceous rocks were interpreted as Palaeozoic in age ranging from Late Carboniferous to Late Permian. Those rudaceous rocks indicated that since Late Carboniferous, palaeogeography of East Johor was a continent with subaerial to shallow marine depositional environment. Keywords: Conglomerate, Palaeozoic, East Johor, subaerial, shallow marine.


Geologos ◽  
2010 ◽  
Vol 16 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Małgorzata Pisarska-Jamroży ◽  
Katarzyna Machowiak ◽  
Dariusz Krzyszkowski

Sedimentation style of a Pleistocene kame terrace from the Western Sudety Mountains, S PolandThe depositional conditions of kame terraces in a mountain valley were analysed sedimentologically and petrologically through a series of kame terraces in the Rudawy Janowickie mountains. The kame terraces comprise five lithofacies associations. Lithofacies association GRt, Sp originates from deposition in the high-energy, deep gravel-bed channel of a braided river. Lithofacies association GC represents a washed out glacial till. Probably a thin layer of till was washed out by sandy braided rivers (Sp). The fourth association (Fh, Fm) indicates a shallow and quite small glaciomarginal lake. The last association (GRt, GRp) indicates the return of deposition in a sandy-bed braided channel. The petrography of the Janowice Wiekie pit and measurements of cross-stratified beds indicate a palaeocurrent direction from N to S. The Janowice Wielkie sedimentary succession accumulated most probably during the Saalian (Odranian, Saale I, Drenthe) as the first phase of ice-sheet melting, because the kame terrace under study is the highest one, 25-27 m above the Bóbr river level. The deposits under study are dominated by local components. The proglacial streams flowed along the margin of the ice sheet and deposited the kame terrace. The majority of the sedimentary succession was deposited in a confined braided-river system in quite deep channels.


2020 ◽  
Vol 94 (5) ◽  
pp. 966-978 ◽  
Author(s):  
Roy M. Farman ◽  
Phil R. Bell

AbstractThe Hawkesbury Sandstone (Hawkesbury Series, Sydney Basin) on the southeastern coast of New South Wales, Australia, preserves a depauperate but important vertebrate tetrapod body-fossil record from the Early and Middle Triassic. As with many fossil sites around the world, the ichnological record has helped to shed light on the paleoecology of this interval. Herein, we investigate historical reports of a trackway pertaining to a putative short-tailed reptile found at Berowra Creek in the 1940s. Reinvestigation of the surviving track-bearing slabs augmented by archival photographs of the complete trackway, suggests that these impressions, which consist primarily of didactyl tracks (plus less common monodactyl and tridactyl traces), represent the earliest example of a swimming tetrapod found in Australia. Another isolated specimen (possibly from a nearby locality at Annangrove) appears to represent similar didactyl swim traces of a second, larger individual. Although the identities of the trackmakers are unknown, the Berowra Creek individual had an estimated body length of between ~80 cm (short-coupled) and 1.35 m (long-coupled), and produced the subaqueous trackway while travelling upslope (against the current) on a sandbar within a braided river system of the Hawkesbury Sandstone. These trackways partially resemble amphibian swim traces in the so-called Batrachichnus C Lunichnium continuum, but appear to represent a unique locomotion trace. This reanalysis of the Berowra Creek trackway provides insight into the locomotion of tetrapods of the Triassic Hawkesbury Series, which remains a poorly understood aspect of their life history.


Sign in / Sign up

Export Citation Format

Share Document