scholarly journals The Impact of the July 2007 Heat Wave on Daily Mortality in Belgrade, Serbia

2013 ◽  
Vol 21 (3) ◽  
pp. 140-145 ◽  
Author(s):  
Dragan C. Bogdanović ◽  
Zoran G. Milošević ◽  
Konstansa K. Lazarević ◽  
Zana Ć. Dolićanin ◽  
Dragan M. Ranđelović ◽  
...  
Keyword(s):  
2005 ◽  
Vol 10 (7) ◽  
pp. 15-16 ◽  
Author(s):  
H Johnson ◽  
S Kovats ◽  
G McGregor ◽  
J Stedman ◽  
M Gibbs ◽  
...  

This paper describes a retrospective analysis of the impact of the 2003 heat wave on mortality in England and Wales, and compares this with rapid estimates based on the Office for National Statistics routine weekly deaths reporting system. Daily mortality data for 4 to 13 August 2003, when temperatures were much hotter than normally seen in England, were compared with averages for the same period in years 1998 to 2002. The August 2003 heat wave was associated with a large short-term increase in mortality, particularly in London. Ozone and particulate matter concentrations were also elevated during the heat wave. Overall, there were 2139 (16%) excess deaths in England and Wales. Worst affected were people over the age of 75 years. The impact was greatest in the London region where deaths in those over the age of 75 increased by 59%. Estimated excess mortality was greater than for other recent heat waves in the United Kingdom. The estimated number of deaths registered each week is reported by the Office for National Statistics. The first clear indication of a substantial increase in deaths was published on 21 August 2003. This provided a quick first estimate of the number of deaths attributable to the heat wave and reflected the pattern of daily deaths in relation to the hottest days, but underestimated the excess when compared with the later analysis.


2021 ◽  
Vol 195 ◽  
pp. 110892
Author(s):  
J.A. López-Bueno ◽  
M.A. Navas-Martín ◽  
C. Linares ◽  
I.J. Mirón ◽  
M.Y. Luna ◽  
...  

2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


Epidemiology ◽  
2004 ◽  
Vol 15 (4) ◽  
pp. S54 ◽  
Author(s):  
Rod Simpson ◽  
Gail Williams ◽  
Adrian Barnett ◽  
Anne Neller ◽  
Trudi Best ◽  
...  

Circulation ◽  
2017 ◽  
Vol 135 (suppl_1) ◽  
Author(s):  
Yi Wang

Background: The association between heat and hospital admissions is well studied, but in Indiana where the regulatory agencies cites lack of evidence for global climate change, local evidence of such an association is critical for Indiana to mitigate the impact of increasing heat. Methods: Using a distributed-lag non-linear model, we studied the effects of moderate (31.7 °C or 90 th percentile of daily mean apparent temperature (AT)), severe (33.5 °C or 95 th percentile of daily mean apparent temperature (AT)) and extreme (36.4 °C or 99 th percentile of AT) heat on hospital admissions (June-August 2007-2012) for cardiovascular (myocardial infarction, myocardial infarction, heart failure) and heat-related diseases in Indianapolis, Indiana located in Marion County. We also examined the added effects of moderate heat waves (AT above the 90 th percentile lasting 2-6 days), severe heat waves (AT above the 95 th percentile lasting 2-6 days) and extreme heat waves (AT above the 99 th percentile lasting 2-6 days). In sensitivity analysis, we tested robustness of our results to 1) different temperature and lag structures and 2) temperature metrics (daily min, max and diurnal temperature range). Results: The relative risks of moderate heat, relative to 29.2°C (75 th percentile of AT), on admissions for cardiovascular disease (CVD), myocardial infarction (MI), heart failure (HF), and heat-related diseases (HD) were 0.98 (0.67, 1.44), 6.28 (1.48, 26.6), 1.38 (0.81, 2.36) and 1.73 (0.58, 5.11). The relative risk of severe heat on admissions for CVD, MI, HF, and HD were 0.93 (0.60, 1.43), 4.46 (0.85, 23.4), 1.30 (0.72, 2.34) and 2.14 (0.43, 10.7). The relative risk of extreme heat were 0.79 (0.26, 2.39), 0.11 (0.087, 1.32), 0.68 (0.18, 2.61), and 0.32 (0.005, 19.5). We also observed statistically significant added effects of moderate heat waves lasting 4 or 6 days on hospital admission for MI and HD and extreme heat waves lasting 4 days on hospital admissions for HD. Results were strengthened for people older than 65. Conclusions: Moderate heat wave lasting 4-6 days were associated with increased hospital admissions for MI and HD diseases and extreme heat wave lasting 4 days were associated with increased admissions for HD.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Jeffrey B. Basara ◽  
Heather G. Basara ◽  
Bradley G. Illston ◽  
Kenneth C. Crawford

During late July and early August 2008, an intense heat wave occurred in Oklahoma City. To quantify the impact of the urban heat island (UHI) in Oklahoma City on observed and apparent temperature conditions during the heat wave event, this study used observations from 46 locations in and around Oklahoma City. The methodology utilized composite values of atmospheric conditions for three primary categories defined by population and general land use: rural, suburban, and urban. The results of the analyses demonstrated that a consistent UHI existed during the study period whereby the composite temperature values within the urban core were approximately C warmer during the day than the rural areas and over C warmer at night. Further, when the warmer temperatures were combined with ambient humidity conditions, the composite values consistently revealed even warmer heat-related variables within the urban environment as compared with the rural zone.


2014 ◽  
Vol 198-199 ◽  
pp. 105-115 ◽  
Author(s):  
Jeffrey A. Geddes ◽  
Jennifer G. Murphy ◽  
Jon Schurman ◽  
Alexandre Petroff ◽  
Sean C. Thomas

2010 ◽  
Vol 15 (13) ◽  
Author(s):  
P J Nogueira ◽  
A Machado ◽  
E Rodrigues ◽  
B Nunes ◽  
L Sousa ◽  
...  

The experience reported in an earlier Eurosurveillance issue on a fast method to evaluate the impact of the 2003 heatwave on mortality in Portugal, generated a daily mortality surveillance system (VDM) that has been operating ever since jointly with the Portuguese Heat Health Watch Warning System. This work describes the VDM system and how it evolved to become an automated system operating year-round, and shows briefly its potential using mortality data from January 2006 to June 2009 collected by the system itself. The new system has important advantages such as: rapid information acquisition, completeness (the entire population is included), lightness (very little information is exchanged, date of death, age, sex, place of death registration). It allows rapid detection of impacts (within five days) and allows a quick preliminary quantification of impacts that usually took several years to be done. These characteristics make this system a powerful tool for public health action. The VDM system also represents an example of inter-institutional cooperation, bringing together organisations from two different ministries, Health and Justice, aiming at improving knowledge about the mortality in the population.


2019 ◽  
Vol 11 (12) ◽  
pp. 3270 ◽  
Author(s):  
Lei Ye ◽  
Ke Shi ◽  
Zhuohang Xin ◽  
Chao Wang ◽  
Chi Zhang

Droughts and heat waves both are natural extreme climate events occurring in most parts of the world. To understand the spatio-temporal characteristics of droughts and heat waves in China, we examine changes in droughts, heat waves, and the compound of both during 1961–2017 based on high resolution gridded monthly sc_PDSI and daily temperature data. Results show that North China and Northwest China are the two regions that experience the most frequent droughts, while Central China is the least drought-affected region. Significant drought decreasing trends were mostly observed Qinghai, Xinjiang, and Tibet provinces, while the belt region between Yunnan and Heilongjiang provinces experienced significant drought increasing trends. Heat waves occur more frequently than droughts, and the increase of heat wave occurrence is also more obvious. The increasing of heat wave occurrence since the 2000s has been unprecedented. The compound droughts and heat waves were mild from the 1960s to 1980s, and began to increase in 1990s. Furthermore, the significant increasing trends of the percentage of compound droughts and heat waves to droughts are observed in entire China, and more than 90% drought occurrences are accompanied by one or more heat waves in the 2010s. The results highlight the increased percentage of compound droughts and heat waves and call for improved efforts on assessing the impact of compound extremes, especially in an era of changing climate.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 133 ◽  
Author(s):  
Lijun Liu ◽  
Yuanqiao Wen ◽  
Youjia Liang ◽  
Fan Zhang ◽  
Tiantian Yang

The impact of extreme weather events on the navigation environment in the inland waterways of the Yangtze River is an interdisciplinary hotspot in subjects of maritime traffic safety and maritime meteorology, and it is also a difficult point for the implementation of decision-making and management by maritime and meteorological departments in China. The objective of this study is to review the variation trends and distribution patterns in the periods of adverse and extreme weather events that are expected to impact on inland waterways transport (IWT) on the Yangtze River. The frequency of severe weather events, together with the changes in their spatial extension and intensity, is analyzed based on the ERA-Interim datasets (1979–2017) and the GHCNDEX dataset (1979–2017), as well as the research progresses and important events (2004–2016) affecting the navigation environment. The impacts of extreme weather events on IWT accidents and phenomena of extreme weather (e.g., thunderstorms, lightning, hail, and tornadoes) that affect the navigation environment are also analyzed and discussed. The results show that: (1) the sections located in the plain climate zone is affected by extreme weather in every season, especially strong winds and heat waves; (2) the sections located in the hilly mountain climate zone is affected particularly by spring extreme phenomena, especially heat waves; (3) the sections located in the Sichuan Basin climate zone is dominated by the extreme weather phenomena in autumn, except cold waves; (4) the occurrence frequency of potential flood risk events is relatively high under rainstorm conditions and wind gusts almost affect the navigation environment of the Jiangsu and Shanghai sections in every year; (5) the heat wave indices (TXx, TR, and WSDI) tend to increase and the temperature of the coldest day of the year gradually increases; (6) the high occurrences of IWT accidents need to be emphasized by relevant departments, caused by extreme weather during the dry season; and (7) the trends and the degree of attention of extreme weather events affecting IWT are ranked as: heat wave > heavy rainfall > wind gust > cold spell > storm. Understanding the seasonal and annual frequency of occurrence of extreme weather events has reference significance for regional management of the Yangtze River.


Sign in / Sign up

Export Citation Format

Share Document