scholarly journals Scientific and Methodological Bases of Exergetic Analysis of the Processes of Heat Treatment of Concrete Products in Heat Technology Installations

Author(s):  
V. N. Romaniuk ◽  
A. M. Niyakovskii

Having proven its effectiveness in finding the best options for energy supply and energy consumption the exergetic method of thermodynamic analysis of complex heat and power systems has been widely recognized in recent years. However, its application is hindered by the lack of appropriate scientific and methodological heat technology support, especially if their application involves not only transformation of energy, but also transformation of substances. Heat treatment of concrete and reinforced concrete products belongs to such technologies. This article presents new scientific results related to the development of exergetic balances of the processes of preparation of concrete mixture in a mixer and heat treatment of a concrete product in a heat-technological installation. For each of these cases, the analysis of exergetic flows was carried out, the structure of the exergy of the concrete mixture and the hardening concrete was determined. Based on the analysis of the literature data on the chemical composition of cement clinkers, cements, and hydration products, new dependences have been proposed for calculating the exergy of the concrete mixture flow and the exergy of concrete under its heat treatment, including all their components, viz. thermomechanical, reaction, and concentration constituents. Absolute energy indicators have been developed. The calculation of the mentioned values was performed on a specific example with the use of the developed scientific and methodological support. In the second part of this paper, the results of the study related to the determination of relative exergetic indicators that allow evaluating the energy efficiency of the processes of heat treatment of concrete products in heat technology installations will be published. The results obtained in this paper can be used for the selection of energy-saving modes of heat-technological equipment intended for industrial heat treatment of concrete products.

Author(s):  
V. N. Romaniuk ◽  
A. M. Niyakovski

This article is the second part of the research devoted to the exergetic analysis of heat treatment processes of concrete products in heat technology installations. In the first part, the issues of calculating the exergy of a concrete mixture and hardening concrete have been considered, taking into account all the components of the exergy, viz. reaction, concentration and thermomechanical ones. In the present part of the study, exergetic criteria are proposed that make it possible to evaluate the energy efficiency of the operating modes of heat-technological equipment for the heat treatment of concrete products. These include the degree of thermodynamic perfection of a heat-power system, which is used to evaluate the completeness of the use of the exergetic input; thermodynamic efficiency of the system of heat treatment of concrete products in heat technology installations, representing the degree of thermodynamic perfection of the heat power system that is calculated without taking into account all the components of the sum of transit exergies; thermodynamic efficiency of the heat treatment system, taking into account the exergetic efficiency of the system of heat energy production and transportation; the degree of technological perfection that indicates at the portion of the exergy supplied to the heat technology installation for the heat treatment of concrete products is intended to obtain a technological result. To calculate the listed indicators and characteristics, a mathematical apparatus is proposed that takes into account the mass of the concrete product, the specific mass exergy of cement and hardening concrete, the specified degree of hydration of cement in concrete at the end of heat treatment, the exergetic flows supplied to the product in a heat technology installation during its heat treatment, and numerical indicators characterizing the incompleteness of the cement hydration process. The results obtained in this paper are discussed from the viewpoint of their applicability in the selection of heat treatment modes. They can be used in the selection of energy-saving modes of heat-technological equipment for industrial heat treatment of concrete products.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 486
Author(s):  
Marek Stawowy ◽  
Adam Rosiński ◽  
Jacek Paś ◽  
Tomasz Klimczak

The article presents issues related to the determination of the continuity quality of power supply (CQoPS) for hospital electrical devices. The model describing CQoPS takes into account power redundancy. The uncertainty modeling method based on the certainty factor (CF) of the hypothesis was used to establish the single-valued CQoPS factor. CQoPS modeling takes into account multidimensional quality models and physical stages of power. The quality models take into account seven dimensions that make up CQoPS (availability, appropriate amount, power supply reliability, power quality, assurance, responsiveness, security). The model of power stages includes five of these stages (power generation, delivery to recipient, distribution by recipient, delivery to device, power-consuming device). To date, when designing hospital power systems, the applied reliability indicators revealed limitations because they do not consider all the possible factors influencing the power continuity. Estimating the supply continuity quality with the use of the uncertainty modeling proposed in this article allows for taking into account all possible factors (not just reliability factors) that may affect supply continuity. The presented modeling offers an additional advantage, namely, it allows an expanded evaluation of the hospital supply system and a description using only one indicator. This fact renders the evaluation of the supply system possible for unqualified staff. At the end of the article, some examples of calculations and simulations are presented, thus showing that the applied methods give the expected results.


Author(s):  
Antoni Świć ◽  
Arkadiusz Gola ◽  
Łukasz Sobaszek ◽  
Natalia Šmidová

AbstractThe article presents a new thermo-mechanical machining method for the manufacture of long low-rigidity shafts which combines straightening and heat treatment operations. A fixture for thermo-mechanical treatment of long low-rigidity shafts was designed and used in tests which involved axial straightening of shafts combined with a quenching operation (performed to increase the corrosion resistance of the steel used as stock material). The study showed that an analysis of the initial deflections of semi-finished shafts of different dimensions and determination of the maximum corrective deflection in the device could be used as a basis for performing axial straightening of shaft workpieces with simultaneous heat treatment and correction of the initial deflection of the workpiece. The deflection is corrected by stretching the fibers of the stock material, at any cross-section of the shaft, up to the yield point and generating residual stresses symmetrical to the axis of the workpiece. These processes allow to increase the accuracy and stability of the geometric shape of the shaft.


2010 ◽  
Vol 77 (4) ◽  
pp. 438-444 ◽  
Author(s):  
Torben Larsen ◽  
Kasey M Moyes

The primary objective of this study is to validate a new fast method for determination of uric acid in milk. The method is based on an enzymatic-fluorometric technique that requires minimal pre-treatment of milk samples. The present determination of uric acid is based on the enzymatic oxidation of uric acid to 5-hydroxyisourate via uricase where the liberated hydrogen peroxide reacts with 10-acetyl-3,7-dihydroxyphenoxazine via peroxidase and the fluorescent product, resorufin, is measured fluorometrically. Fresh composite milk samples (n=1,072) were collected from both Jersey (n=38) and Danish Holstein (n=106) cows from one local herd. The average inter- and intra-assay variations were 7·1% and 3·0%, respectively. Percent recovery averaged 103·4, 107·0 and 107·5% for samples spiked with 20, 40 or 60 μmof standard, respectively, with a correlation (r=0·98;P<0·001) observed between the observed and expected uric acid concentrations. A positive correlation (r=0·96;P<0·001) was observed between uric acid concentrations using the present method and a reference assay. Storage at 4°C for 24 h resulted in lower (P<0·01) uric acid concentrations in milk when compared with no storage or samples stored at −18°C for 24 h. Addition of either allopurinol (a xanthine oxidase inhibitor) or dimethylsulfoxide (a solvent for allopurinol) did not affect milk uric acid concentrations (P=0·96) and may indicate that heat treatment before storage and analysis was sufficient to degrade xanthine oxidase activity in milk. No relationship was observed between milk uric acid and milk yield and milk components. Authors recommend a single heat treatment (82°C for 10 min) followed by either an immediate analysis of fresh milk samples or storage at −18°C until further analysis.


Author(s):  
Irene Garcia Garcia ◽  
Radoslav Stefanovic

Equipment that is exposed to severe operational pressure and thermal cycling, like coke drums, usually suffer fatigue. As a result, equipment of this sort develop defects such as cracking in the circumferential welds. Operating companies are faced with the challenges of deciding what is the best way to prevent these defects, as well as determining how long they could operate if a defect is discovered. This paper discusses a methodology for fracture mechanics testing of coke drum welds, and calculations of the critical crack size. Representative samples are taken from production materials, and are welded employing production welding procedures. The material of construction is 1.25Cr-0.5Mo low alloy steel conforming to ASME SA-387 Gr 11 Class 2 in the normalized and tempered condition (N&T). Samples from three welding procedures (WPS) are tested: one for production, one for a repair with heat treatment, and one for repair without heat treatment. The position and orientation of test specimen are chosen based on previous surveys and operational experience on similar vessels that exhibited cracks during service. Fracture mechanics toughness testing is performed. Crack finite element analysis (FEA) model is used to determine the path-independed JI-integral driving force. Methodology for the determination of critical crack size is developed.


1985 ◽  
Vol 12 (1) ◽  
pp. 45-49 ◽  
Author(s):  
D. L. Ketring ◽  
H. E. Pattee

Abstract Following harvest, peanuts are usually subjected to a period of storage. During storage biochemical changes are known to occur. The objectives of this study were to determine the changes and relationship in ethylene production, germination, and lipoxygenase (LG) activity during cold storage of dormant NC-13 peanut seeds. Two seed lots (SL) were used: one grown in Oklahoma (SL80) and the other grown in N. Carolina (SL81). SL80 and SL81 were stored at 2 to 5 C for 193 and 242 days, respectively. Samples were taken at about 28-day intervals for determination of germination, ethylene production, and LG activity. Seeds of two and three maturities were tested for SL80 and SL81, respectively. As afterripening of stored seeds proceeded, ethylene production gradually increased, with the maximum at 48 hours of germination. Germination showed a concomitant gradual increase. Lipoxygenase activity of both seedlots was less for mature than for immature seeds and showed a sharp increase during storage at 2 to 5 C, particularly for immature seeds. After heat-treatment to break dormancy of sublots from SL81, there was a progessive increase in ethylene production and germination, but most notably for mature seeds. In contrast to ethylene production and germination, after heat-treatment LG activity declined. Linear correlation coefficient (r) values between ethylene production and germination were highly significant for mature seeds from SL80 at 48 and 72 hours of germination, but only at 72 hours for immature seeds. For SL81 as for SL80, significant positive correlations were found between ethylene production and germination. However, correlations between LG activity and the other variables were not significant except for mature seeds from SL81. Significant positive correlations for both ethylene production and germination with LG activity also existed for these seeds. But after heat-treatment these correlations no longer occurred. The data indicate that the metabolic processes related to ethylene production and germination are occurring simultaneously with those of LG activity. The possibility that metabolites from LG activity serve as substrates for ethylene production can not be precluded.


Sign in / Sign up

Export Citation Format

Share Document