scholarly journals Production Technology and Damping Properties of Aerated Polymer Coatings

2021 ◽  
Vol 20 (5) ◽  
pp. 375-382
Author(s):  
V. K. Sheleg ◽  
Ma Min ◽  
M. A. Belotserkovsky

The process of obtaining aerated (filled with air bubbles) polymer coatings has been developed and investigated by the method of flame spraying with an assessment of their ability to damp vibrations. A technology for the controlled formation of aerated polymer coatings has been developed while using the capabilities of the ОИМ (OIM) 050 polymer thermal atomizer design which consists in providing a concurrent air flow between the flame torch and the jet of powder material. The experiments have been carried out with such thermoplastic polymers as polyethylene terephthalate, high pressure polyethylene, ultra high molecular weight polyethylene, polyamide. It has been found that the aeration coefficient grows almost in direct proportion with an increase in the amount of air in the concurrent flow for all investigated polymer coatings. It is noted that the aeration process is influenced by the rheological properties of liquid polymers, or rather, the value of the polymer melt flow rate. The limiting values of air in the concurrent flow have been determined, which make it possible not to reduce the adhesion of polymer coatings to steel substrates by less than 6 MPa and not to decrease their hardness by more than 25–30 %. Studies of the damping properties of samples with polymer coatings have been carried out on a stand, the kinematic diagram of which is based on loading the free end of a cantilever sample, abrupt removal of the load and registration of free damped oscillations by an induction-type contactless sensor connected to a computer. It is shown that the use of aeration when forming noise-absorbing coatings on steel samples can increase their logarithmic damping decrement by 18–26 %.

Author(s):  
D.J. Varacalle ◽  
K.W. Couch ◽  
V.S. Budinger

Abstract Experimental studies of the subsonic combustion process have been conducted in order to determine the quality and economics of polyester, epoxy, urethane, and hybrid polyester-epoxy coatings. Thermally sprayed polymer coatings are of interest to several industries for anti-corrosion applications, including the infrastructural, chemical, automotive, and aircraft industries. Classical experiments were conducted, from which a substantial range of thermal processing conditions and their effect on the resultant coating were obtained. The coatings were characterized and evaluated by a number of techniques, including Knoop microhardness tests, optical metallography, image analysis, and bond strength. Characterization of the coatings yielded thickness, bond strength, hardness, and porosity.


2018 ◽  
Vol 938 ◽  
pp. 46-53 ◽  
Author(s):  
Sergey I. Koryagin ◽  
O.V. Sharkov ◽  
Nikolay L. Velikanov

Polymer coatings are widely used for effective vibration damping of sheet or hull structures of different engineering systems. The article presents a calculation and experimental technique that enables improved accuracy and validity of damping properties determination of polymer coatings. Mathematical models to determine the parameters of the experimental specimen having a homogenous strain state of the polymer coating are obtained. Experimentally confirmed that the use of coatings based on adhesive compositions such as "Sprut" increases by 18...28 times the damping capability in metal structures. An addition of fillers in adhesive compositions "Sprut" type in a proportion of 30...50% of its weight reduces by 2.4 times the damping properties of metal structures.


Author(s):  
Yu. Borisov ◽  
V. Korzhik ◽  
I. Sviridova ◽  
A. Skorokhod

Abstract In thermal spraying of metal-polymer coatings, the processes of polymers oxidation and destruction can have special features, as the temperature of heating of the filler particles can significantly exceed the temperature of destruction of the polymer binder. Hence, the need to study the features of the process of formation of thermal sprayed coatings from filled polymers and their physico-chemical, mechanical and service properties. This paper describes the influence of a filler composition and conditions of flame spraying on a structure and mechanical properties of composite polymer coatings. It is observed that addition of 5-10 vol. % of Fe-Ni-B alloy powder to low-pressure polyethylene polymer matrices, improves the wear resistance of thermal sprayed coatings 1.2-1.3 times under the conditions of gas-abrasive wear, compared to purely polymer coating, owing to the combination of the higher hardness of the coating with the high damping properties of the polymer matrix.


Author(s):  
M. V. Kireitseu ◽  
L. Bochkareva

The focus in this paper is directed toward to the investigation into hybrid metal-polymer-ceramic damping coatings for pipelines and fuel tanks. Recently sandwiched coatings have been manufactured by advanced technology based on thermal flame spraying of foamy aluminum or its alloy and viscoelastic polymeric layers (ultra high molecular weight polyethylene). Technological aspects of manufacturing are discussed for tailoring safety and reliability of pipeline structure affected by external shock impact and vibrations. The particle-reinforced coatings is further formed as a constrained-layer damping coating system (CLD) showing the greatest range over which damping coatings have excellent energy absorbing/damping properties over bulk materials. Modal loss factors of clamped specimen obtained at 60–80% coverage were higher than maximum damping values obtained in the case of 100% specimen coverage. FEM-based computer modeling was used to predict the damping of multilayer materials by a strain energy method.


Author(s):  
D.J. Varacalle ◽  
D.P. Zeek ◽  
K.W. Couch ◽  
D.M. Benson ◽  
S.M. Kirk

Abstract Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs.


1986 ◽  
Vol 18 (4) ◽  
pp. 547-552
Author(s):  
S. V. Dyatchenko ◽  
A. I. Koryagin ◽  
A. P. Yakovlev

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Galina Kazimirovna Elyashevich ◽  
Dmitry Igorevich Gerasimov ◽  
Ivan Sergeevich Kuryndin ◽  
Viktor Konstantinovich Lavrentyev ◽  
Elena Yurievna Rosova ◽  
...  

Composite systems containing electroconducting polymer coatings (polyaniline and polypyrrole) applied to porous films of semicrystalline polymers (polyethylene, polypropylene, and polyvinylidene fluoride) have been prepared. Porous supports were obtained in the process based on polymer melt extrusion with subsequent annealing, uniaxial extensions, and thermal stabilization. Conducting coatings were formed by the oxidative polymerization of the monomers directly onto the porous supports. The structure (overall porosity, permeability, pore sizes, factor of orientation) and morphology (specific surface and character of the film surface) of the supports were characterized by sorptometry, filtration porosimetry, atomic force microscopy (AFM), and X-ray scattering techniques. It was observed that the porous supports have a strongly developed relief surface which is formed in the pore formation process. It was proven by scanning electron microscopy (SEM) that the porous supports have an oriented structure, and the surface of the composites is defined by the morphology inherent in the conducting component. It was shown that these composites (porous support/conducting coating) demonstrate electric conductivity both along the surface and between surfaces. It was demonstrated that the deposition of conducting coatings leads to an increase in the water wettability of the composites compared with pronounced hydrophobic supports. The composites are characterized by good adhesion between components due to a relief film surface as well as high mechanical strength and elasticity provided by the oriented character of the supports.


Sign in / Sign up

Export Citation Format

Share Document