scholarly journals Influence of wind disturbances and nonlinearities of servo drive on the contour of stabilization of the flight of height of unmanned aerial vehicle

Author(s):  
V. A. Malkin ◽  
I. V. Rozhkov ◽  
A. A. San’ko

The article discusses a mathematical model of wind, taking into account its stochastic component and wind of a steady direction, presents the results of a comparative analysis of the effect of wind parameters on the total wind velocity vector acting on unmanned aerial vehicles (UAV). The main non-line arities of the autopilot servo elements and their influence on the output signal are considered. The reaction of the contour of the UAV flight altitude stabilization to the wind is considered, taking into account the nonlinearity of the servo drive elements. Proved the need to take into account the wind in the synthesis of automatic control systems (ACS) and the contours of the angular stabilization of the drone at stages where the flight speed of the drone is less than 30 m / s.

2020 ◽  
Vol 33 (02) ◽  
pp. 638-650
Author(s):  
Mikhail Yu. Babich ◽  
Mikhail M. Butaev ◽  
Dmitry V. Pashchenko ◽  
Alexey I. Martyshkin ◽  
Dmitry A. Trokoz

Recently, unmanned aerial vehicles have been an important part of scientific research in various fields. Quadrocopter is an unmanned aerial vehicle with four rotors, two of which rotate clockwise, the other two counterclockwise. Changing the speed of screw rotation allows you to control the movement of the apparatus. The article proposed and tested a mathematical model of a quadcopter. They presented the development of a simple control algorithm that allows to stabilize the height and angular position. The research results show the efficiency of the algorithm and the possibility of its practical implementation. The developed mathematical model can be used instead of a real quadcopter, which will significantly reduce the time during research, as well as avoid the quadrocopter damage, reducing the number of launches.


Author(s):  
O. M. Pereguda ◽  
A. V. Rodionov ◽  
S. P. Samoilyk

The article proposes an approach to increasing the survivability of class I unmanned aerial vehicles in emergency operations which involves development of an onboard information system for identifying emergency occasions in flight and the synthesis of a control action on the unmanned aircraft in case of hazardous factors influence. As the result of the analysis of the main trends in the development of unmanned aerial vehicles onboard control systems, it was found that the leading countries are paying significant attention to increasing their intellectualization level. This is necessary to ensure the fulfilment of complex tasks that are assigned to modern unmanned aerial vehicles in the military and civilian spheres. The main directions of such researches are identifying the problem of swarm application of unmanned aerial vehicles and expanding the capabilities of onboard control systems maintain automatically the values of certain parameters when the flight conditions changes. As the approach to increasing the survivability of a class I unmanned aerial vehicle, a vision of an onboard information system for identifying emergency occasions in flight and synthesis of control action is proposed, the functional purpose of its components is described. It is suggested that this system will be comprised of a subsystem for identifying emergency cases in flight and determining the class I unmanned aerial vehicle threat level and a subsystem for synthesizing control action. Governing documents and regulations for the state aviation of Ukraine determines the list of aircraft emergency occasions. Article mentions the necessity of detailing emergency occasions in flight, which are typical for class I unmanned aerial vehicles and an approach to their classification is proposed. A vision of the nearest partial scientific tasks and a list of expected scientific results of research in this direction are given.


The development of technologies for the development and use of unmanned aerial vehicles (UAV) for military purposes is especially notable. Modern UAV are used as one of the most important means increasing combat capabilities of the Armed Forces. Their combat use is desirable when performing tasks characterized by a long flight duration, increased danger and complexity. The use of UAV to ensure the safety of civilian objects and critical infrastructure facilities is also highlighted, forcing more attention to be paid to new methods of monitoring and monitoring the earth's surface. The analysis showed that there are potential threats of the emergence news power electromagnetic means of influence on unmanned aerial vehicles using ultrashort electromagnetic pulses. The article analyzes the characteristics of existing means generating ultrashort electromagnetic pulses and the trivial characteristics of aviation data exchange protocols. The necessity of testing telecommunication control systems for unmanned aerial vehicles based on the influence of ultrashort electromagnetic pulses is shown, and the experimental method is the most promising method for assessing their impact.


2019 ◽  
Vol 30 (2) ◽  
pp. 169-175 ◽  
Author(s):  
MADS BECH-HANSEN ◽  
RUNE M. KALLEHAUGE ◽  
JANNIK M. S. LAURITZEN ◽  
MATHIAS H. SØRENSEN ◽  
BJARKE LAUBEK ◽  
...  

SummaryUnmanned aerial vehicles (UAVs) are useful tools in ornithological studies. Importantly, though, UAV-caused disturbance has been noted to vary among species. This study evaluated guidelines for UAVs as a tool for researching geese. Twenty-four flocks of foraging geese were approached at an altitude of 50–100 m with a quadcopter UAV and disturbance effects were analysed across different horizontal distances between the UAV and the flocks. Geese were increasingly disturbed when approached by a UAV, with birds showing increased vigilance behaviour within approximately 300 m. Increasing UAV flight altitude as well as increasing take-off distance from the flocks both decreased the risk of bird flocks flushing. In conclusion, when monitoring geese using UAVs, flight altitudes of 100 m and take-off distances of ideally ∼500 m are recommended, to minimise initial disturbance and reducing the risk of birds flushing.


2018 ◽  
Vol 221 ◽  
pp. 05003
Author(s):  
Il’ya O. Akimov ◽  
Vsevolod V. Koryanov

Unmanned aerial vehicles are used for research in many areas: photography and video shooting and so on. The development of unmanned aerial vehicles is directly related to the development of airspace. Today, a mathematical model is required that would describe the movement of such an aircraft with the purpose of predicting, correcting and optimizing it. The paper presents the results of a study of the controlled motion of an unmanned multi-rotor aircraft using the example of a quadrocopter. The study included the development of a law governing the apparatus and its modeling in the form of a software package. The structure of the autopilot, its main contours and parameters of these circuits are considered. After determining the necessary characteristics of the autopilot, modeling of the controlled motion of the quadrocopter in the execution environment was carried out.


2013 ◽  
Vol 01 (02) ◽  
pp. 259-275 ◽  
Author(s):  
Ramsingh G. Raja ◽  
Charu Chawla ◽  
Radhakant Padhi

A dynamic inversion-based three-dimensional nonlinear aiming point guidance law is presented in this paper for reactive collision avoidance of unmanned aerial vehicles. When an obstacle is detected in the close vicinity and collision is predicted, an artificial safety sphere is put around the center of the obstacle. Next, the velocity vector of the vehicle is realigned towards an 'aiming point' on the surface of the sphere in such a way that passing through it can guarantee safe avoidance of the obstacle. The guidance command generation is based on angular correction between the actual and the desired direction of the velocity vector. Note that the velocity vector gets aligned along the selected aiming point quickly (i.e., within a fraction of the available time-to-go), which makes it possible to avoid pop-up obstacles. The guidance algorithm has been verified with simulations carried out both for single obstacles as well as for multiple obstacles on the path and also with different safety sphere sizes around the obstacles. The proposed algorithm has been validated using both kinematic as well as point mass model of a prototype unmanned aerial vehicle. For better confidence, results have also been validated by incorporating a first-order autopilot models for the velocity vector magnitude and directions.


Author(s):  
Sergii Zhdanov ◽  
◽  
Natalia Kadet ◽  
Valerii Silkov ◽  
Mariia Zirka ◽  
...  

The paper presents one of the perspective directions of the development to modern aviation, which is connected with designing and producing unmanned aerial vehicles (UAV) of various functionalities for applying in both military and civilian spheres. The syntheses of UAV control systems, regardless of their type and purpose presumes creation of adequate mathematical models, first of all adequate aerodynamic mathematical models. In the paper results that forms and justify the aerodynamic mathematical model and as well as the results of building a general mathematical model of the longitudinal movement of the perspective UAV are presented. Also factors that forms the mathematical model on given aerodynamic, geometric, mass and inertial data for a hypothetical perspective altitude long-range UAV are submitted. Assessment of the impact of these data on the dynamic, temporal, and logarithmic frequency response UAV also has been given in this paper.


2021 ◽  
Vol 24 (3) ◽  
pp. 57-70
Author(s):  
A. V. Vindeker

The problem of choosing a rational declination system from alternative variants at the stage of forming the appearance of an unmanned aerial vehicle (UAV) with a vertical launch is considered. Currently, the vertical launch is becoming more widely used for surface-to-air unmanned aerial vehicles, which are considered in this paper. A characteristic initial part of the trajectory of such unmanned aerial vehicles is the declination to the required angular position over a short period of time. The UAV declination process requires the generation of relatively large control moments. Declination of surface-to-air UAVs is implemented by means of moment gas-dynamic control with two main methods – by using the thrust vector control system of the UAV main jet engine or by using special additional gas-dynamic devices. The alternative variants of declination systems for solving the problem under consideration are:– a thrust vector control system with gas rudders installed in the UAV engine nozzle or just behind its cut-off on special pylons;– a pulse propulsion system that creates the UAV declination moment by means of jets of micro-thrusters, which are activated by a special algorithm.In the comparative analysis of declination systems, the criterion for choosing the correct method of declination was the actual near border of the affected zone. The mass minimum of the projected UAV is accepted as the criterion for choosing a rational variant of the declination system. The main relations for calculating the main design parameters of the considered declination systems are given. The appearance parameters of the hypothetical surface-to-air UAV of medium range with alternative declination systems were calculated. A comparative analysis of the results obtained was carried out.


Author(s):  
I. V. Zimchuk ◽  
V. I. Ishchenko ◽  
T. M. Shapar

Unmanned aerial vehicles are by far the most promising military and civilian systems. There is a tendency to increase the efforts of a number of leading countries in the development of unmanned aerial vehicles and their complexes. The mathematical model of any system reflects in one way or another its real properties, including the existing limitations. It has been found that one of the most favorable and efficient methods for constructing mathematical models of automatic control systems is to develop them using transfer functions. In order to solve this problem, the article deals with the composition of the control system of a drone. A mathematical model consisting of the joint design of the unmanned aerial vehicle and its automatic control system has been synthesized. The description of the proposed mathematical model of the system is based on the representation of a linear continuous system by the difference equations obtained using the Tustin relation. The mathematical model proposed in the article can be used for the study of typical aircraft whose course management system is built according to the considered structure. The practical significance of the obtained results is the possibility of applying the developed mathematical model to study the dynamics of the change of state and to set up the system of automatic control of the course of the unmanned aerial vehicle through computer simulation. Prospects for further research in this area are computer simulation of an unmanned aerial vehicle control system and estimation of the accuracy of the mathematical model developed.


Sign in / Sign up

Export Citation Format

Share Document