scholarly journals Evaluation Method of Mesh Protocol over ESP32 and ESP8266

2021 ◽  
Vol 18 (4(Suppl.)) ◽  
pp. 1397
Author(s):  
Nur Azzurin Afifie ◽  
Adam Wong Yoon Khang ◽  
Abd Shukur Bin Ja'afar ◽  
Ahmad Fairuz Bin Muhammad Amin ◽  
Jamil Abedalrahim Jamil Alsayaydehahmad ◽  
...  

Internet of Things (IoT) is one of the newest matters in both industry and academia of the communication engineering world. On the other hand, wireless mesh networks, a network topology that has been debate for decades that haven’t been put into use in great scale, can make a transformation when it arises to the network in the IoT world nowadays. A Mesh IoT network is a local network architecture in which linked devices cooperate and route data using a specified protocol. Typically, IoT devices exchange sensor data by connecting to an IoT gateway. However, there are certain limitations if it involves to large number of sensors and the data that should be received is difficult to analyze. The aim of the work here is to implement a self-configuring mesh network in IoT sensor devices for better independent data collection quality. The research conducted in this paper is to build a mesh network using NodeMCU ESP 8266 and NodeMCU ESP 32 with two types of sensor, DHT 11 and DHT 22. Hence, the work here has evaluated on the delay performance metric in Line-of-Sight (LoS) and Non-Line-of-Sight (nLos) situation based on different network connectivity. The results give shorter delay time in LoS condition for all connected nodes as well as when any node fail to function in the mesh network compared to nLoS condition. The paper demonstrates that the IoT sensor devices composing the mesh network is a must to leverage the link communication performance for data collection in order to be used in IoT-based application such as fertigation system. It will certainly make a difference in the industry once being deployed on large scale in the IoT world and make the IoT more accessible to a wider audience.

Author(s):  
Kun-chan Lan ◽  
Zhe Wang ◽  
Mahbub Hassan ◽  
Tim Moors ◽  
Rodney Berriman ◽  
...  

Wireless mesh networks (WMN) have attracted considerable interest in recent years as a convenient, new technology. However, the suitability of WMN for mission-critical infrastructure applications remains by and large unknown, as protocols typically employed in WMN are, for the most part, not designed for real-time communications. In this chapter, the authors describe a wireless mesh network architecture to solve the communication needs of the traffic control system in Sydney. This system, known as SCATS and used in over 100 cities around the world — from individual traffic light controllers to regional computers and the central TMC —places stringent requirements on the reliability and latency of the data exchanges. The authors discuss experience in the deployment of an initial testbed consisting of 7 mesh nodes placed at intersections with traffic lights, and share the results and insights learned from measurements and initial trials in the process.


Author(s):  
Kun-Chan Lan

Wireless mesh networks (WMN) have attracted considerable interest in recent years as a convenient, flexible and low-cost alternative to wired communication infrastructures in many contexts. However, the great majority of research on metropolitan-scale WMN has been centered around maximization of available bandwidth, suitable for non-real-time applications such as Internet access for the general public. On the other hand, the suitability of WMN for missioncritical infrastructure applications remains by and large unknown, as protocols typically employed in WMN are, for the most part, not designed for realtime communications. In this chapter, we describe a real-world testbed, which sets a goal of designing a wireless mesh network architecture to solve the communication needs of the traffic control system in Sydney, Australia. This system, known as SCATS (Sydney Coordinated Adaptive Traffic System) and used in over 100 cities around the world, connects a hierarchy of several thousand devices -- from individual traffic light controllers to regional computers and the central Traffic Management Centre (TMC) - and places stringent requirements on the reliability and latency of the data exchanges. We discuss some issues in the deployment of this testbed consisting of 7 mesh nodes placed at intersections with traffic lights, and show some results from the testbed measurements.


2008 ◽  
Vol 14 (8) ◽  
pp. 401-403 ◽  
Author(s):  
Xinheng Wang

Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.


10.2196/13305 ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. e13305 ◽  
Author(s):  
Michelle L'Hommedieu ◽  
Justin L'Hommedieu ◽  
Cynthia Begay ◽  
Alison Schenone ◽  
Lida Dimitropoulou ◽  
...  

Although traditional methods of data collection in naturalistic settings can shed light on constructs of interest to researchers, advances in sensor-based technology allow researchers to capture continuous physiological and behavioral data to provide a more comprehensive understanding of the constructs that are examined in a dynamic health care setting. This study gives examples for implementing technology-facilitated approaches and provides the following recommendations for conducting such longitudinal, sensor-based research, with both environmental and wearable sensors in a health care setting: pilot test sensors and software early and often; build trust with key stakeholders and with potential participants who may be wary of sensor-based data collection and concerned about privacy; generate excitement for novel, new technology during recruitment; monitor incoming sensor data to troubleshoot sensor issues; and consider the logistical constraints of sensor-based research. The study describes how these recommendations were successfully implemented by providing examples from a large-scale, longitudinal, sensor-based study of hospital employees at a large hospital in California. The knowledge gained from this study may be helpful to researchers interested in obtaining dynamic, longitudinal sensor data from both wearable and environmental sensors in a health care setting (eg, a hospital) to obtain a more comprehensive understanding of constructs of interest in an ecologically valid, secure, and efficient way.


Author(s):  
Sandro Bimonte ◽  
Marilys Pradel ◽  
Daniel Boffety ◽  
Aurelie Tailleur ◽  
Géraldine André ◽  
...  

Agricultural energy consumption is an important environmental and social issue. Several diagnosis tools have been proposed to define indicators for analyzing the large-scale energy consumption of agricultural farm activities (year, farm, production activity, etc.). In Bimonte, Boulil, Chanet and Pradel (2012), the authors define (i) new appropriate indicators to analyze agricultural farm energy-use performance on a detailed scale and (ii) show how Spatial Data Warehouse (SDW) and Spatial OnLine Analytical Processing (SOLAP) GeoBusiness Intelligence (GeoBI) technologies can be used to represent, store, and analyze these indicators by simultaneously producing graphical and cartographic reports. These GeoBI technologies allow for the analysis of huge volumes of georeferenced data by providing aggregated numerical values visualized by means of interactive tabular, graphical, and cartographic displays. However, existing data collection systems based on sensors are not well adapted for agricultural data. In this paper, the authors show the global architecture of our GeoBI solution and highlight the data collection process based on agricultural ad hoc sensor networks, the associated transformation and cleaning operations performed by means of Spatial Extract Transform Load (ETL) tools, and a new implementation of the system using a web-services-based loosely coupled SOLAP architecture to provide interoperability and reusability of the complex multi-tier GeoBI architecture. Moreover, the authors detail how the energy-use diagnosis tool proposed in Bimonte, Boulil, Chanet and Pradel (2012) theoretically fits with the sensor data and the SOLAP approach.


Author(s):  
Mark Roantree ◽  
Alan F. Smeaton ◽  
Noel E. O’Connor ◽  
Vincent Andrieu ◽  
Nicolas Legeay ◽  
...  

One of the more recent sources of large volumes of generated data is sensor devices, where dedicated sensing equipment is used to monitor events and happenings in a wide range of domains, including monitoring human biometrics and behaviour. This chapter proposes an approach and an implementation of semi-automated enrichment of raw sensor data, where the sensor data can come from a wide variety of sources. The authors extract semantics from the sensor data using their XSENSE processing architecture in a multi-stage analysis. The net result is that sensor data values are transformed into XML data so that well-established XML querying via XPATH and similar techniques can be followed. The authors then propose to distribute the XML data on a peer-to-peer configuration and show, through simulations, what the computational costs of executing queries on this P2P network, will be. This approach is validated approach through the use of an array of sensor data readings taken from a range of biometric sensor devices, fitted to movie-watchers as they watched Hollywood movies. These readings were synchronised with video and audio analysis of the actual movies themselves, where we automatically detect movie highlights, which the authors try to correlate with observed human reactions. The XSENSE architecture is used to semantically enrich both the biometric sensor readings and the outputs of video analysis, into one large sensor database. This chapter thus presents and validates a scalable means of semi-automating the semantic enrichment of sensor data, thereby providing a means of large-scale sensor data management which is a necessary step in supporting data mining from sensor networks.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4474 ◽  
Author(s):  
Asside Djedouboum ◽  
Ado Abba Ari ◽  
Abdelhak Gueroui ◽  
Alidou Mohamadou ◽  
Zibouda Aliouat

Data collection is one of the main operations performed in Wireless Sensor Networks (WSNs). Even if several interesting approaches on data collection have been proposed during the last decade, it remains a research focus in full swing with a number of important challenges. Indeed, the continuous reduction in sensor size and cost, the variety of sensors available on the market, and the tremendous advances in wireless communication technology have potentially broadened the impact of WSNs. The range of application of WSNs now extends from health to the military field through home automation, environmental monitoring and tracking, as well as other areas of human activity. Moreover, the expansion of the Internet of Things (IoT) has resulted in an important amount of heterogeneous data that are produced at an exponential rate. Furthermore, these data are of interest to both industry and in research. This fact makes their collection and analysis imperative for many purposes. In view of the characteristics of these data, we believe that very large-scale and heterogeneous WSNs can be very useful for collecting and processing these Big Data. However, the scaling up of WSNs presents several challenges that are of interest in both network architecture to be proposed, and the design of data-routing protocols. This paper reviews the background and state of the art of Big Data collection in Large-Scale WSNs (LS-WSNs), compares and discusses on challenges of Big Data collection in LS-WSNs, and proposes possible directions for the future.


Author(s):  
Michelle L'Hommedieu ◽  
Justin L'Hommedieu ◽  
Cynthia Begay ◽  
Alison Schenone ◽  
Lida Dimitropoulou ◽  
...  

UNSTRUCTURED Although traditional methods of data collection in naturalistic settings can shed light on constructs of interest to researchers, advances in sensor-based technology allow researchers to capture continuous physiological and behavioral data to provide a more comprehensive understanding of the constructs that are examined in a dynamic health care setting. This study gives examples for implementing technology-facilitated approaches and provides the following recommendations for conducting such longitudinal, sensor-based research, with both environmental and wearable sensors in a health care setting: pilot test sensors and software early and often; build trust with key stakeholders and with potential participants who may be wary of sensor-based data collection and concerned about privacy; generate excitement for novel, new technology during recruitment; monitor incoming sensor data to troubleshoot sensor issues; and consider the logistical constraints of sensor-based research. The study describes how these recommendations were successfully implemented by providing examples from a large-scale, longitudinal, sensor-based study of hospital employees at a large hospital in California. The knowledge gained from this study may be helpful to researchers interested in obtaining dynamic, longitudinal sensor data from both wearable and environmental sensors in a health care setting (eg, a hospital) to obtain a more comprehensive understanding of constructs of interest in an ecologically valid, secure, and efficient way.


Author(s):  
Jane-Hwa Huang ◽  
Li-Chun Wang ◽  
Chung-Ju Chang

The wireless mesh network (WMN) is an economical solution to enable ubiquitous broadband services due to the advantages of robustness, low infrastructure costs, and enhancing coverage by low power. The wireless mesh network also has a great potential for realizing green communications since it can save energy and resources during network operation and deployment. With short-range communications, the transmission power in the wireless mesh networks is lower than that in the single-hop networks. Nevertheless, wireless mesh network should face scalability issue since throughput enhancement, coverage extension, and QoS guarantee are usually contradictory goals. Specifically, the multi-hop communications can indeed extend the coverage area to lower the infrastructure cost. However, with too many hops to extend coverage, the repeatedly relayed traffic will exhaust the radio resource and degrade the quality of service (QoS). Furthermore, as the number of users increases, throughput and QoS (delay) degrade sharply due to the increasing contention collisions. In this chapter, from a network architecture perspective we investigate how to overcome the scalability issue in WMNs, so that the tradeoff between coverage and throughput can be improved and the goal of QoS provisioning can be achieved. We discuss main QoS-related research directions in WMNs. Then, we introduce two available scalable mesh network architectures that can relieve the scalability issue and support QoS in WMNs for the wide-coverage and dense-urban coverage. We also investigate the optimal tradeoff among throughput, coverage, and delay for the proposed WMNs by an optimization approach to design the optimal system parameters.


2019 ◽  
Vol 11 (8) ◽  
pp. 166 ◽  
Author(s):  
Elzain ◽  
Wu

Wireless Mesh Networks (WMNs), have a potential offering relatively stable Internet broadband access. The rapid development and growth of WMNs attract ISPs to support users’ coverage anywhere anytime. To achieve this goal network architecture must be addressed carefully. Software Defined Networking (SDN) proposes new network architecture for wired and wireless networks. Software Defined Wireless Networking (SDWN) has a great potential to increase efficiency, ease the complexity of control and management, and accelerate technology innovation rate of wireless networking. An SDN controller is the core component of an SDN network. It needs to have updated reports of the network status change, as in network topology and quality of service (QoS) in order to effectively configure and manage the network it controls. In this paper, we propose Flat Distributed Software Defined Wireless Mesh Network architecture where the controller aggregates entire topology discovery and monitors QoS properties of extended WMN nodes using Link Layer Discovery Protocol (LLDP) protocol, which is not possible in multi-hop ordinary architectures. The proposed architecture has been implemented on top of POX controller and Advanced Message Queuing Protocol (AMQP) protocol. The experiments were conducted in a Mininet-wifi emulator, the results present the architecture control plane consistency and two application cases: topology discovery and QoS monitoring. The current results push us to study QoS-routing for video streaming over WMN.


Sign in / Sign up

Export Citation Format

Share Document