scholarly journals Synthesizing, Structuring, and Characterizing Bioactivities of .Cr(III), La(III), and Ce(III) .Complexes with Nitrogen, Oxygen .and Sulpher donor bidentate Schiff base ligands

2021 ◽  
Vol 18 (4(Suppl.)) ◽  
pp. 1545
Author(s):  
Anaam M. Rasheed ◽  
Sinan M. M. Al-Bayati ◽  
Dr.Rehab A.M. Al-Hasani ◽  
Muna Ali Shakir

Two Schiff bases, namely, 3-(benzylidene amino) -2-thioxo-6-methyl 2,5-dihydropyrimidine-4(3H)-one (LS])and 3-(benzylidene amino)-6-methyl pyrimidine 4(3H, 5H)-dione(LA)as chelating ligands), were used to prepare some complexes of Cr(III), La(III), and Ce(III)] ions. Standard physico-chemical procedures including metal analysis M%, element microanalysis (C.H.N.S) , magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identify Metal (III) complexes and  Schiff bases (LS) and (LA). According to findings, a [Cr(III) complex] showed six coordinated octahedral geometry, while [La(III), and Ce(III) complexes]were structured with coordination number seven.  Schiff's bases and mineral complexes were examined in vitro to investigate potential inhibition against Gram-positive bacteria such as Pseudonomous aerugionosa and Gram-negative bacteria such as Staphylococcus aureus. The low concentration for inhibition has been also determined by studying the minimal inhibitory concentrations MIC .Antibiotics (Ampicillin, Amoxicillin) have been chosen to contrast their activity. Furthermore, Anti-fungal activity against two types of fungi ʺAspergillus flavusʺ and ʺPenicillum Spp.ʺ was studied for these compounds. The results of the antibacterial activity were better compared to the standard drugs.

2019 ◽  
Vol 17 (72) ◽  
pp. 129-138
Author(s):  
Yasmine Kadom. Al-Majedy

Novel Quinozolins were synthesized in a good yield through convert lacton to lactam and study the biological activity of the synthesized compounds. Quinozolins were characterized by elemental analysis, FT-IR and UV/visible spectra. The novel Quinozolins have been tested in vitro against (gram positive bacteria Staphylococcus aureus and against other gram negative bacteria, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus vulgaris; in order to assess their antimicrobial properties. Moreover, charge, bond length, bond angle, twist angle, heat of formation and steric energy were calculated by using of the ChemOffice program. The study indicates that these Quinozolins have high activity against tested bacteria. Based on the reported results, it may be concluded that the coumarin act as synthons for synthesis of new Quinozolins derivatives through the replacement of oxygen atom by nitrogen atom.


2010 ◽  
Vol 4 (2) ◽  
pp. 37-45
Author(s):  
Matheel D. Al-Sabti ◽  
Ahmed A. H. Al-Amiery ◽  
Thorria R. Marzoog ◽  
Yasmien K. Al-Majedy

This study involves the chemical synthesis of the novel ligand 5-(2-diphenylphosphino) phenyl-1,2-dihydro-1,2,4-triazole-3-thione (DPDTT) by the reaction of 2-diphenylphosphino benzoic acid with absolute ethanol that yield ethyl 2-diphenylphosphino benzoate and by cyclization of this compound with thiosemicarbazide, DPDTT will be produced. The chelating complexes of this ligand with Cr(III), Co(II), Ni(II), Cu(II) and Cd(II) were also prepared and studied. The new complexes were characterized by FT-IR, UV/visible spectra, and room temperature magnetic susceptibility. The stability for the prepared complexes was also measured using the density function theory and it was found that the cadmium complex is the most stable and the chromium complex is the least stable. Free ligand and its metal complexes have been tested in vitro against a number of microorganisms, like gram positive bacteria Staphylococcus aureus and gram negative bacteria E. coli, Proteus vulgaris, Pseudomonas and Klebsiella in order to assess their antimicrobial properties. All complexes showed considerable activity against all the studied bacteria.


2009 ◽  
Vol 3 (2) ◽  
pp. 1-12
Author(s):  
Matheel D. Al-Sabti ◽  
Ahmed A. H. Al-Amiery ◽  
Yasmien K. Al-Majedy ◽  
Amel Ali

Chromium )III), cobalt (II), nickel (II), copper (II) and cadmium (II) complexes of 3,5-dimethyl-1H-pyrazol-1-yl phenyl methanone and 1-benzoyl-3-methyl-1H-pyrazol-5(4H)-one have been synthesized and characterized by elemental analysis, FT-IR, UV/visible spectra, and room temperature magnetic susceptibility. Cadmium complex is expected to have tetrahedral structure while the other complexes are expected to have octahedral structure. The free ligands and their metal complexes have been tested in vitro against a number of microorganisms (Staphylococcus aurous, E.coli, Proteus vulgaris, Pseudomonas, and Klebsiella) in order to assess their antimicrobial properties.


Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


2011 ◽  
Vol 8 (4) ◽  
pp. 1005-1011
Author(s):  
Baghdad Science Journal

Many complexes of 3,5-dimethyl-1H-pyrazol-1-yl phenyl methanone with Cr(III), Co(II), Ni(II), Cu(II) and Cd(II) were synthesized and characterized by FT-IR, UV/visible spectra, elemental analysis, room temperature magnetic susceptibility and molar conductivity. Cd(II) complex was expected to have tetrahedral structure while all the other complexes were expected to have an octahedral structure.


Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 413 ◽  
Author(s):  
Clément Offret ◽  
Ismaïl Fliss ◽  
Laurent Bazinet ◽  
André Marette ◽  
Lucie Beaulieu

The Atlantic mackerel, Scomber scombrus, is one of the most fished species in the world, but it is still largely used for low-value products, such as bait; mainly for crustacean fishery. This resource could be transformed into products of high value and may offer new opportunities for the discovery of bioactive molecules. Mackerel hydrolysate was investigated to discover antibacterial peptides with biotechnological potential. The proteolytic process generated a hydrolysate composed of 96% proteinaceous compounds with molecular weight lower than 7 kDa. From the whole hydrolysate, antibacterial activity was detected against both Gram-negative and Gram-positive bacteria. After solid phase extraction, purification of the active fraction led to the identification of 4 peptide sequences by mass spectrometry. The peptide sequence N-KVEIVAINDPFIDL-C, called Atlantic Mackerel GAPDH-related peptide (AMGAP), was selected for chemical synthesis to confirm the antibacterial activity and to evaluate its stability through in vitro digestibility. Minimal inhibitory concentrations of AMGAP revealed that Listeria strains were the most sensitive, suggesting potential as food-preservative to prevent bacterial growth. In addition, in vitro digestibility experiments found rapid (after 20 min) and early digestibility (stomach). This study highlights the biotechnological potential of mackerel hydrolysate due to the presence of the antibacterial AMGAP peptide.


2020 ◽  
Vol 1204 ◽  
pp. 127534 ◽  
Author(s):  
Maximiliano A. Iramain ◽  
Ana E. Ledesma ◽  
Elizabeth Imbarack ◽  
Patricio Leyton Bongiorno ◽  
Silvia Antonia Brandán

2019 ◽  
Vol 32 (1) ◽  
pp. 174-182
Author(s):  
S. Amala ◽  
G. Rajarajan ◽  
E. Dhineshkumar ◽  
M. Arockia doss ◽  
V. Thanikachalam

The structures of newly synthesized compounds (1-3) viz. 3-ethyl-5-methyl-2,6-bis(4- chlorophenyl)piperidin-1-ium picrate (1), 3-ethyl-5-methyl-2,6-bis(4-methylphenyl)piperidin-1-ium picrate (2) and 3-ethyl-5-methyl-2,6-bis(3,4-dimethoxyphenyl)piperidin-1-ium picrate (3) were confirmed by elemental analysis, FT-IR, 1H and 13C NMR. The UV-visible spectra, fluoresence, emission properties of synthesized 1-3 in different solvents were studied. Compounds 1-3 solvatochromic displays a slight effect of the emission and absorption spectrum, indicating a small change in the dipole moment upon excitation of compounds 1-3. All the compounds were investigated by DFT. The theoretical geometrical parameters are in good agreement with experimental values.


2019 ◽  
Vol 48 (33) ◽  
pp. 12496-12511 ◽  
Author(s):  
G. Kalaiarasi ◽  
S. Dharani ◽  
V. M. Lynch ◽  
R. Prabhakaran

Three tetranuclear (1–3) complexes and a mononuclear (4) palladium(ii) complex were synthesized from 3-acetyl-chromen-2-one Schiff base ligands [H2-3MAC-Rtsc] (where R = H; CH3; C2H5[H2-3MAC-etsc] or C6H5) and potassium tetrachloropalladate.


NANO ◽  
2016 ◽  
Vol 11 (06) ◽  
pp. 1650064 ◽  
Author(s):  
Jia-Ying Xin ◽  
Hong-Chen Fan ◽  
Sheng-Fu Ji ◽  
Yan Wang ◽  
Chun-Gu Xia

The development of palladium nanoparticles (PdNPs) with a narrow size distribution is an important aspect of nanotechnology. Methanobactin (Mb) is a copper-binding small peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Here, Mb was shown to bind and catalytically reduce Pd (II) to Pd (0). The one-step synthesis of monodisperse PdNPs using Mb as both coordination agent and reduction agent is reported. Fluorescence spectra, UV-visible spectra, X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FT-IR) suggested that the Mb molecules catalytically reduce Pd (II) to Pd (0) with the concomitant production of PdNPs. The Mb is then adsorbed onto the surface of the PdNPs to form an Mb–PdNPs coordination compound. This avoids secondary nucleation. The PdNPs are small with high monodispersity and are easily synthesized in Mb solution. The PdNPs were extremely stable and resisted aggregation even after several months.


Sign in / Sign up

Export Citation Format

Share Document