scholarly journals Synthesis and Characterization of New nano catalyst Mo-Ni /TiO2- γAl2O3 for Hydrodesulphurization of Iraqi Gas Oil

2021 ◽  
Vol 18 (4(Suppl.)) ◽  
pp. 1557
Author(s):  
Dalya Jasim Ahmed ◽  
Basim Ibrahim Al-Abdaly ◽  
Sattar Jalil Hussein

   A new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2- γ-Al2O3 Nano catalyst were then characterized by XRD, AFM, and BET surface area, SEM, XRF, and FTIR. The performance of the synthesized catalyst for removing sulfur compounds was conducted through the pilot HDS laboratory unit, various temperatures range 275oC to 375°C, LHSV 1 h-1 were studied; moreover, the effect of LHSV 1 to 4 h-1 on the percentage of sulfur removal was also studied at the temperature of the best removal with constant pressure 35 bar and H2/HC ratio 200cm3/200cm3. The sulfur content results generally revealed that there was a substantial decrease at all operating conditions used, while the maximum sulfur removal was 87.75% in gas oil on Ni-Mo/TiO2-γ-Al2O3 catalyst at temperature 375˚C and LHSV 1h-1.

2021 ◽  
Vol 11 (1) ◽  
pp. 84-106
Author(s):  
Nada Sadoon Ahmed zeki ◽  
Sattar Jalil Hussein ◽  
Khalifa K. Aoyed ◽  
Saad Kareem Ibrahim ◽  
Ibtissam K. Mehawee

This work deals with the hydrodesulfurization of three types of naphtha feedstocks; mixednaphtha (WN), heavy naphtha (HN) & light naphtha (LN) with a sulfur content of 1642.1,1334.9 & 709 ppm respectively, obtained from Missan refinery using prepared Co-Mo/γ-Al2O3catalyst. The Iraqi white kaolin was used as a starting material for the preparation of γ-Al2O3support, transferring kaolin to meta-kaolin was studied through calcination at differenttemperatures and durations, kaolin structure was investigated using X-Ray diffractiontechniques.High purity 94.83%. Crystalline γ-Al2O3 with a surface area of 129.91 m2/gm, pore volume0.9002 cm3/g was synthesized by extraction of Iraqi kaolin with H2SO4 at different acid to clayweight ratios, acid concentrations & leaching time. Ethanol was used as precipitating agent; theresultant gel was dried and calcined at 70OC, 10 hrs & 900 OC, 2 hrs respectively.The effects of different parameters on the average crystallinity and extraction % ofsynthesized γ-Al2O3 were studied like; acid: clay ratio, sulfuric acid concentration, leachingtime, leaching temperature & kaolin conversion to metakaolin. Characterization of prepared γ-Al2O3 & Co-Mo catalyst were achieved by X-ray diffraction, FTIR-spectra, texture properties& BET surface area, BJH N2 adsorption porosity, AFM, SEM, crush strength & XRF tests. Co-Mo/ γ-Al2O3 catalyst with final loading 5.702 wt% and 21.45 wt% of Co and Mo oxidesrespectively was prepared by impregnation methods.The activity of prepared Co-Mo/γ-Al2O3 catalyst after moulding to be tested forhydrodesulfurization (HDS) of naphtha feedstock W.N, H.N & L.N was performed using apilot hydrotreating unit at petroleum research & development centre, at different operatingconditions. Effects of temperature, LHSV, pressure, time & pore size distribution were studied,the best percentage of sulfur removal is increased with decreasing LHSV to 2 hr-1 as a generaltrend to be 89.71, 99.72, 99.20 % at 310oC for the whole naphtha, heavy naphtha and lightnaphtha feedstocks respectively, at 34 bar pressure and 200/200 cm3/cm3 H2/HC ratio.


RSC Advances ◽  
2020 ◽  
Vol 10 (61) ◽  
pp. 37287-37298
Author(s):  
Suleiman Sabo Bello ◽  
Chao Wang ◽  
Mengjuan Zhang ◽  
Zhennan Han ◽  
Lei Shi ◽  
...  

The CoMo/Al2O3 catalyst was used to upgrade shale oil. Sulfur removal was increased on the spent catalyst. The transition of oxidic Mo-species into active phase MoS2 was observed with recycling. The high sulfidation degree of the CoMo/Al2O3 suppressed deactivation by coking.


2019 ◽  
Vol 11 (3) ◽  
pp. 357-371
Author(s):  
Mohammad F. Abid ◽  
Mohammed A. Hamza ◽  
Shakir M. Ahmed ◽  
Salah M. Ali ◽  
Sattar J. Hussein

Unsupported MoS2 catalysts were synthesized for the hydrodesulfurization (HDS) of real feed gas oil using different temperatures and pressures. Hydrothermal method was utilized to prepare by using molybdenum trioxide and sodium sulfide. The characterization of the catalyst was identified by XRD, SEM, and BET techniques. It was found that BET surface and pore volume were positively affected by pressure and temperature that could improve the activity of MoS2. Kinetic analysis showed that HDS reaction over MoS2 follow pseudo-first order kinetics. Experimental results revealed that the HDS activity of the unsupported MoS2 catalyst was better than supported CoMo/Al2O3 catalyst under the same operating conditions.


2021 ◽  
Vol 16 (4) ◽  
pp. 716-732
Author(s):  
Amer Talal Nawaf ◽  
Shymaa Ali Hameed ◽  
Layth T. Abdulateef ◽  
Aysar Talib Jarullah ◽  
Mohammed S. Kadhim ◽  
...  

Oxidative desulfurization process (ODS), enhanced with a novel metal oxide (Ag ions) as an active component over nano-zeolite that has not been reported in the literature, is used here to improve the fuel quality by removing mercaptan (as a model sulfur compound in the light naphtha). Nano-crystalline (nano-support (Nano-zeolite)) composite is prepared by Incipient Wetness Impregnation method loaded with a metal salt to obtain 0.5, 1 and 1.5% of Ag2O3 over Nano-zeolite. The new homemade nano-catalysts (Ag2O3/Nano-zeolite) prepared are characterized by Brunauer–Emmett–Teller (BET) (surface area, pore volume and pore size), X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) analysis. The ODS process is then used to evaluate the performance of the catalysts for the removal of sulfur at different reaction temperatures (80–140 °C) and reaction times (30–50 min) in a batch reactor using the air as oxidant. 87.4% of sulfur removal has been achieved using 1% silver oxide loaded on Nano zeolite (1% of Ag2O3/Nano-zeolite) giving a clear indication that our newly designed catalyst is highly efficient catalyst  in the removal of sulfur compound (mercaptan) from naphtha. A new mechanism of chemical reaction for sulfur removal by oxygen using the new homemade catalyst (Ag2O3/Nano-zeolite) prepared has been suggested in this study. The best kinetic model parameters of the relevant reactions are also estimated in this study using pseudo first order technique based on the experimental results. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2014 ◽  
Vol 79 (9) ◽  
pp. 1099-1110 ◽  
Author(s):  
Rezvani Ali ◽  
Shojaei Fallah ◽  
Zonoz Mohamadi

(Bu4N)4H[PMo10V2O40]-TiO2 nanocomposite has been synthesized by a reaction of (Bu4N)4H[PMo10V2O40] with titanium tetraisopropoxide at 100 ?C via sol-gel method. The crushed nano layer of anatase phase is 20 nm in nature and fixing of (Bu4N)4H[PMo10V2O40] decreases its size. This nano Polyphosphomolybdate was shown be able to oxidative desulphurization of simulated gas oil with high S conversion (more than 98%). In the present work, efficient oxidative desulphurization of gas oil and simulated gas oil with formic acid/hydrogen peroxide system is reported. This system provides an efficient, convenient and practical method for scavenging sulfur compound.


2020 ◽  
Vol 21 (1) ◽  
pp. 23-31
Author(s):  
Hussam Jumaah Mousa ◽  
Hussein Qasim Hussein

The present research was conducted to reduce the sulfur content of Iraqi heavy naphtha by adsorption using different metals oxides over Y-Zeolite. The Y-Zeolite was synthesized by a sol-gel technique. The average size of zeolite was 92.39 nm, surface area 558 m2/g, and pore volume 0.231 cm3/g. The metals of nickel, zinc, and copper were dispersed by an impregnation method to prepare Ni/HY, Zn/HY, Cu/HY, and Ni + Zn /HY catalysts for desulfurization. The adsorptive desulfurization was carried out in a batch mode at different operating conditions such as mixing time (10,15,30,60, and 600 min) and catalyst dosage (0.2,0.4,0.6,0.8,1, and 1.2 g). The most of the sulfur compounds were removed at 10 min for all catalyst types. The maximum sulfur removal was 56% using (Ni+Zn)/HY catalyst at 1.2 g dose for 24 h. The adsorption kinetics and isotherm of sulfur removal were studied, and results indicated that desulfurization adsorption kinetic was 2nd order, and Temkin and Freundlich models were the best representation isotherm.


2019 ◽  
Vol 17 (1) ◽  
pp. 1459-1465
Author(s):  
Xuedong Feng ◽  
Jing Yi ◽  
Peng Luo

AbstractWith the purpose of studying the influence of NO/O2 on the NOx storage activity, a Pt-Ba-Ce/γ-Al2O3 catalyst was synthesized by an acid-aided sol-gel method. The physical and chemical properties of the catalyst were characterized by X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) methods. The results showed that the composition of the catalyst was well-crystallized and the crystalline size of CeO2 (111) was about 5.7 nm. The mechanism of NO and NO2 storage and NOx temperature programmed desorption (NO-TPD) experiments were investigated to evaluate the NOx storage capacity of the catalyst. Pt-Ba-Ce/γ-Al2O3 catalyst presented the supreme NOx storage performance at 350℃, and the maximum value reached to 668.8 μmol / gcat. Compared with O2-free condition, NO oxidation to NO2 by O2 had a beneficial effect on the storage performance of NOx. NO-TPD test results showed that the NOx species stored on the catalyst surface still kept relatively stable even below 350℃.


Fuel ◽  
2010 ◽  
Vol 89 (11) ◽  
pp. 3193-3206 ◽  
Author(s):  
F.Y.A. El Kady ◽  
M.G. Abd El Wahed ◽  
S. Shaban ◽  
A.O. Abo El Naga

2005 ◽  
Vol 885 ◽  
Author(s):  
Krithi Shetty ◽  
Shihuai Zhao ◽  
Wei Cao ◽  
Naidu V. Seetala ◽  
Debasish Kuila

ABSTRACTThe goal of this research is to investigate the activities of a non-noble nano-catalyst (Ni/SiO2) using Si-microreactors for steam reforming of methanol to produce hydrogen for fuel cells. The supported catalyst was synthesized by sol-gel method using Ni (II) salts and Si(C2H5O)4 as starting materials. EDX results indicate that the actual loading of Ni (5-6%) is lower than the intended loading of 12 %. The specific surface area of the silica sol-gel encapsulated Ni nano-catalyst is 452 m2/g with an average pore size of ∼ 3 nm. Steam reforming reactions have been carried out in a microreactor with 50 µm channels in the temperature range of 180-240 °C and atmospheric pressure. Results show 53% conversion of methanol with a selectivity of 74 % to hydrogen at 5 l/min and 200 °C. The magnetic properties of the catalysts were performed using a Vibrating Sample Magnetometer (VSM) to study the activity of the catalysts before and after the steam reforming reactions. The VSM results indicate much higher activity in the microreactor compared to macro-reactor and Ni forms non-ferromagnetic species faster in the microreactor.


2015 ◽  
Vol 1107 ◽  
pp. 341-346
Author(s):  
Wan Nazwanie Wan Abdullah ◽  
Rusmidah Ali ◽  
Wan Azelee Wan Abu Bakar

Due to the low specifications for sulfur content in diesel, a lot of research work are been conducted to develop alternative method for desulfurization. Catalytic oxidative desulfurization (Cat-ODS) has been found to be an alternative method to replace a conventional method which is hydrodesulfurization.New catalyst formulation using tert-butyl hydroperoxide polymolybdate based catalyst system was investigated in this research utilizing tert-butyl hydroperoxide (TBHP) as oxidant and dimethylformamide (DMF) as solvent for extraction. A series of polymolybdate supported alumina catalysts were prepared using wet impregnation method, ageing at ambient room temperature for 24 hours and followed by calcination process. A commercial diesel with 440 ppmw of total sulfur was employed to evaluate the elimination of sulfur compounds. Besides, the percentage of sulfur removal was measured by gas chromatography-flame photometric detector (GC-FPD). The sulfur content in commercial diesel was successfully reduced from 440 ppmw to 35 ppmw under mild condition followed by solvent extraction. From catalytic testing, Mo-Al2O3 calcined at 500°C was revealed as the most potential catalyst which gave 92% of sulfur removal.


Sign in / Sign up

Export Citation Format

Share Document