scholarly journals Study the Characteristic of the Coupling Parameter ( ? ) in Dusty Plasma by Computer modeling

2010 ◽  
Vol 7 (1) ◽  
pp. 98-104
Author(s):  
Baghdad Science Journal

Computer modeling has been used to investing the Coulomb coupling parameter ?. The effects of the structure parameter K, grain charge Z, plasma density N, temperature dust grain Td, on the Coulomb coupling parameter had been studied. It was seen that the ? was increasing with increasing Z and N, and decrease with increasing K and T. Also the critical value of ? that the phase transfer of the plasma state from liquid to solid was studied.

2022 ◽  
pp. 34-48
Author(s):  
Aamir Shahzad ◽  
Zakia Rafiq ◽  
Alina Manzoor ◽  
Muhammad Kashif

Equilibrium molecular dynamics (EMD) simulation has been employed to explore the dynamical structure factors (DSFs) of two-dimensional (2D) dusty plasma systems for a wide domain of plasma parameters of Coulomb coupling (Γ) and Debye screening strength (κ). The influence of varying wave vectors (k) on plasma DSFs S (k, ω) have been reported with different combinations of plasma state points (Γ, κ). New simulations have been tested for the influence of different wave vectors on plasma density S (k, ω) in addition to different combinations of plasma state points. New results of plasma density S (k, ω) show that amplitude of oscillation and frequency will vary with increasing value of Coulomb coupling parameter (Γ) and Debye screening strength (κ). These simulation techniques show that transient behavior has been reported for frequency (ω) with various values of Debye screening strength (κ) and number of particles (N). Moreover, EMD simulation has been checked in order to investigate the behavior of plasma DSFs with increasing number of particles (N). The outcomes of EMD simulations are matched to earlier known numerical and experimental data. It has been shown that fluctuation of dynamical density increases at intermediate to higher values of coupling parameter. However, it shows less fluctuation at higher values of Debye screening strength (κ).


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Swati Baruah ◽  
U. Sarma ◽  
R. Ganesh

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.


2019 ◽  
Vol 21 (6) ◽  
pp. 065001
Author(s):  
N AHMAD ◽  
A A ABID ◽  
Y AL-HADEETHI ◽  
M N S QURESHI ◽  
Saqib REHMAN

2000 ◽  
Vol 63 (2) ◽  
pp. 191-200 ◽  
Author(s):  
A. A. MAMUN ◽  
M. H. A. HASSAN

Effects of dust grain charge fluctuation, obliqueness and external magnetic field on a finite-amplitude dust acoustic solitary potential in a magnetized dusty plasma, consisting of electrons, ions and charge-fluctuating dust grains, are investigated using the reductive perturbation method. It is shown that such a magnetized dusty plasma system may support a dust acoustic solitary potential on a very slow time scale involving the motion of dust grains, whose charge is self- consistently determined by local electron and ion currents. The effects of dust grain charge fluctuation, external magnetic field and obliqueness are found to modify the properties of this dust acoustic solitary potential significantly. The implications of these results for some space and astrophysical dusty plasma systems, especially planetary ring systems and cometary tails, are briefly mentioned.


2013 ◽  
Vol 79 (6) ◽  
pp. 1117-1121 ◽  
Author(s):  
A. A. ABID ◽  
S. ALI ◽  
R. MUHAMMAD

AbstractDust charging processes involving the collection of electrons and positive/negative ions in a non-equilibrium dusty plasma are revisited by employing the power-law kappa (κ)-distribution function. In this context, the current balance equation is solved to obtain dust grain surface potential in the presence of negative ions. Numerically, it is found that plasma parameters, such as the κ spectral index, the negative ion-to-electron temperature ratio (γ), the negative–positive ion number density ratio (α), and the negative ion streaming speed (U0) significantly modify the dust grain potential profiles. In particular, for large kappa values, the dust grain surface potential reduces to the Maxwellian case, and at lower kappa values the magnitude of the negative dust surface potential increases. An increase in γ and U0 leads to the enhancement of the magnitude of the dust grain surface potential, while α leads to an opposite effect. The relevance of present results to low-temperature laboratory plasmas is discussed.


2019 ◽  
Vol 37 (01) ◽  
pp. 122-127 ◽  
Author(s):  
Daljeet Kaur ◽  
Suresh C. Sharma ◽  
R.S. Pandey ◽  
Ruby Gupta

AbstractIn this paper, we study the excitation of Gould–Trivelpiece (TG) waves by streaming ions in dusty plasma and derive the dispersion relation of the excited waves using first-order perturbation theory. The motion of charged particles is controlled by electromagnetic fields in plasma. The energy transfer processes which occur in this collisionless plasma are believed to be based on wave–particle interactions. We have found that the TG waves may be generated in a streaming ion plasma via Cerenkov interaction, and the ions may be accelerated by TG waves via cyclotron interaction, which enable energy and momentum transfer. The variation in the growth rate of TG wave with dust grain size and relative density of negatively charged dust grains is also studied. The dust can cause an unstable TG mode to be stable in Doppler resonance, and can induce an instability in Cerenkov interaction.


2020 ◽  
pp. 2150121
Author(s):  
Bo Liu ◽  
Juan Fang Han ◽  
Wen Shan Duan

Both the linear and the nonlinear magnetosonic wave in a multi-component dusty plasma are studied in the present paper. The dependence of the dispersion relation of the linear waves on the dust size distribution are given. It seems that the larger the difference between the maximum and the minimum radius of the dust grains, the lower the wave frequency for all cases of the dust size distribution. Furthermore, it is noted that the width, the amplitude and the propagation velocity of the KdV solitary wave depend on the dust size distribution, especially it depend on whether the number density of the larger sized dust grain is larger or smaller than that of the smaller sized dust grain. For the power law dust size distribution, the width and the propagation velocity of the KdV solitary wave between the maximum and the minimum radius of the dust grains is larger than that of mono-sized dusty plasma.


2014 ◽  
Vol 80 (6) ◽  
pp. 817-823 ◽  
Author(s):  
Sanat Tiwari ◽  
Vikram Dharodi ◽  
Amita Das ◽  
Predhiman Kaw ◽  
Abhijit Sen

The Kelvin-Helmholtz (KH) instability is studied in a two dimensional strongly coupled dusty plasma medium using a fluid approach as well as through a molecular dynamic (MD) simulation. For the fluid description the generalized hydrodynamic (GH) model which treats the strongly coupled dusty plasma as a visco-elastic fluid is adopted. For the MD studies the ensemble of particles are assumed to interact through a Yukawa potential. Both the approaches predict a stabilization of the KH growth rate with an increase in the strong coupling parameter. The present study also delineates the temporal evolution and the interaction of transverse shear waves with the collective dynamics of the dusty plasma medium within the framework of both these approaches.


Sign in / Sign up

Export Citation Format

Share Document