Tectono-sedimentary evolution of a fore-chain domain : example of the Habt and Sidi Mrayt basins, northwestern external Moroccan Rif ; stratigraphic precisions and tectonic modelling

2004 ◽  
Vol 175 (4) ◽  
pp. 383-397 ◽  
Author(s):  
Abdelali Zakir ◽  
Ahmed Chalouan ◽  
Hugues Feinberg

Abstract In this paper, a tecto-sedimentary evolution model of the northwestern external Rif zones (Morocco) is proposed. It is based on the study of structural relationships and the biostratigraphic and sedimentologic analysis of different Tertiary syn-tectonic units. This zone shows alternating foredeep basins and anticlinal ramps with a NNW-SSE structural trend and a vergence toward the WSW. The trend of turbiditic bodies and palaeocurrent directions (from the SSE to the NNW) are parallel to the regional tectonic strike. Sidi Mrayt and El Habt basins are filled with syn-tectonic middle Eocene to middle Miocene sediments; The Habt basin is subdivided in two sub-basins: Asilah-Larache and Rirha-Gzoula. The deposits are distributed in two separated turbiditic complex, each one including a stacking of turbiditic systems. The Rirha-Gzoula and Asilah-Larache sub-basins are located in front of two anticline ridge structures made up of Upper Cretaceous and Lower Eocene material; they are respectively Boujediane and Arbaa Ayacha anticlines. The distribution of turbiditic bodies, unconformities and structural relationships within the thrusts and folds system in the northwestern external Rif indicate the progression toward the external zones of fault-propagation folds and associated basins.

1964 ◽  
Vol S7-VI (4) ◽  
pp. 545-553 ◽  
Author(s):  
Fernand Touraine

Abstract The Sainte-Victoire mountain in southern France has been considered the overturned southern limb of the Vauvenargues anticline, but the structure east of the Delubre fault is complicated by an oblique fold. The western margin is concealed by transgressive Tortonian (middle Miocene) beds covering the plateau of Beaumettes. The anticline probably is upper Cretaceous. Folding was renewed in the upper Lutetian (middle Eocene), and resulted in overturning and thrust faulting of the south limb. Subsequent normal faulting compartmented the mass, resulting in selective differential movement of blocks as horsts and grabens. The term piano keys structure is given to this type of structure.


Fossil Record ◽  
2017 ◽  
Vol 20 (2) ◽  
pp. 245-251 ◽  
Author(s):  
Adán Pérez-García ◽  
Thierry Smith

Abstract. An almost complete plastron, as well as several peripherals and a costal plate of a turtle from the middle Eocene of Saint-Gilles, is presented here. Although this turtle specimen was donated to the Institut royal des Sciences naturelles de Belgique (Brussels, Belgium) more than a century ago, it remained undescribed. Its study allows us to recognize the second pleurodiran in the Belgian fossil record, where, until now, the Eocene Neochelys was the only one known. The Belgian material of Neochelys is known in lower Eocene (early Ypresian) levels, but the new pleurodiran specimen comes from the middle Eocene (early Lutetian). It is the first partial articulate shell of a pleurodiran turtle recognized in Belgium, and the only member of this clade recognized in this country at specific level. The new specimen is a representative of the so-called Erymnochelys group, this lineage being known in Africa from the Upper Cretaceous to the present but in Europe only during the Eocene. It represents the first specimen of Eocenochelus eremberti identified outside its type locality, the French region of Saint-Germain-en-Laye (Yvelines, Île-de-France), where only one specimen was found. The plastron of the Belgian individual corresponds to the most complete for this species. Its analysis allows us not only to broaden the range of paleobiogeographical distribution of Eocenochelus eremberti but also to improve the knowledge about the anatomy and variability of this taxon.


1966 ◽  
Vol S7-VIII (6) ◽  
pp. 807-817
Author(s):  
Jacques Charvet

Abstract Marine facies ranging in age from Liassic to Eocene are present in the Stenico region (southern Alps, Trento province, Italy). The facies represent a transition between the Trentino flexure to the east and the Lombardy depression to the west. Neritic deposits in the Liassic are succeeded by pelagic deposits; pelagic sedimentation predominated from the upper Jurassic through the lower Eocene and became neritic in the middle Eocene. Evidence from brecciated formations indicates that movement at the beginning of the upper Cretaceous caused emergence in certain sections and reworking of submarine deposits in others.


2019 ◽  
Vol 54 (2) ◽  
pp. 47-95
Author(s):  
Jason A. Lillegraven

ABSTRACT This geologic study is focused on a less than 5 square-mile (ca. 13 km2) tract of public land in northwestern Wyoming, 8 miles (12.9 km) south-southwest of the small town of Clark in Park County. The study area is south of Clarks Fork of Yellowstone River along the eastern base of the topographic feature called Bald Ridge, also known structurally as Dead Indian monocline. Since the Middle Eocene, the study area has been along the northwestern margin of the Bighorn Basin. Prior to that time, the study area existed near the west–east center of the basin. Bald Ridge became elevated late in the Laramide orogeny (no older than the Early Eocene) through east-directed faulting of basement rocks via the extensive Line Creek–Oregon Basin thrust system. As that active faulting occurred, the overlying Phanerozoic strata (Lower Cambrian through Lower Eocene) responded with numerous west-directed, out-of-the-basin thrusts as a new western-basin margin developed along the eastern realm of the newly born Absaroka volcanic field. Most of that deformation occurred after deposition of uppermost levels of the Lower Eocene Willwood Formation. The key purpose of the present paper was to improve the accuracy of mapping of the Jurassic into Eocene stratigraphy along the newly restricted, northwestern edge of Wyoming’s Bighorn Basin. The stratigraphic column in a north–south band along the eastern flank of the Beartooth Mountains and continuing southward into the present study area was markedly deformed and deeply eroded late during the Laramide orogeny. The present small, more southerly study area is structurally and erosionally simpler than its more northerly equivalent. Thus, its study adds important geological information to the history of the northern Cody Arch, a convex-westward string of related basement-involved uplifts extending southward to southwest of the city of Cody. Progressively steepening eastward dips of strata characterize a west-to-east transect from the summit of Bald Ridge (capped by the shallowly dipping, Mississippian Madison Limestone) to the western edge of strongly overturned outcrops of the Eocene Willwood Formation. The Upper Cretaceous Meeteetse Formation is the stratigraphic horizon at which the dips attain vertical or slightly overturned orientations. All consequential faults within the newly mapped area are thrusts, and they show generally westward (out-of-the-basin) displacements. Despite those west-directed displacements, their primary cause was tectonic shortening at depth below Bald Ridge that was directed to the northeast or east-northeast. During the Laramide orogeny, certain thrust planes within the east-dipping Phanerozoic rock column cut down-section stratigraphically (but uphill relative to Earth’s surface) and thereby placed younger strata upon older. The cumulative result, as recognized at several levels within the present area of study, was marked thinning of the total section. For example, surface exposures of the mostly Paleocene Fort Union Formation, 4,000 feet (1,219 m) thick only 7 miles (11.3 km) to the east, was completely eliminated from the local surface stratigraphy by that means. The northern end of Bald Ridge is formed by the highly asymmetric Canyon Mouth anticline. That structure differs strongly in the attitude of its hinge line from the general east-northeast dip of strata cloaking Bald Ridge. The Canyon Mouth anticline’s hinge line plunges steeply to the southeast, and dips on its northeastern flanks are vertical to partly overturned. Surprisingly, hinge lines and flanks of all other anticlinal/synclinal structures recognized within the present map area share those same orientations with Canyon Mouth anticline. These consistent but unexpected differences in orientation from unfolded strata may represent very late events in the history of Laramide strain vectors across the study area. Working in northern parts of this study area, an independent group determining radiometric ages of detrital-zircon grains reported close agreements in age with their host localities in the Early Cretaceous Mowry Shale and Frontier Formation. However, under the present paper’s interpretation of the local stratigraphy, the other workers misidentified formational hosts for all three samplings. That resulted in age-determination errors of depositional history within the Upper Cretaceous section of as much as 28.8 million years.


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Santiago Moliner-Aznar ◽  
Manuel Martín-Martín ◽  
Tomás Rodríguez-Estrella ◽  
Gregorio Romero-Sánchez

The Cenozoic Malaguide Basin from Sierra Espuña (Internal Betic Zone, S Spain) due to the quality of outcropping, areal representation, and continuity in the sedimentation can be considered a key-basin. In the last 30 years, a large number of studies with very different methodological approaches have been done in the area. Models indicate an evolution from passive margin to wedge-top basin from Late Cretaceous to Early Miocene. Sedimentation changes from limestone platforms with scarce terrigenous inputs, during the Paleocene to Early Oligocene, to the deep basin with huge supplies of turbidite sandstones and conglomerates during the Late Oligocene to Early Miocene. The area now appears structured as an antiformal stack with evidence of synsedimentary tectonics. The Cenozoic tectono-sedimentary basin evolution is related to three phases: (1) flexural tectonics during most of the Paleogene times to create the basin; (2) fault and fold compartmentation of the basin with the creation of structural highs and subsiding areas related to blind-fault-propagation folds, deforming the basin from south to north during Late Oligocene to Early Aquitanian times; (3) thin-skin thrusting tectonics when the basin began to be eroded during the Late Aquitanian-Burdigalian. In recent times some works on the geological heritage of the area have been performed trying to diffuse different geological aspects of the sector to the general public. A review of the studies performed and the revisiting of the area allow proposing different key-outcrops to follow the tectono-sedimentary evolution of the Cenozoic basin from this area. Eight sites of geological interest have been selected (Cretaceous-Cenozoic boundary, Paleocene Mula Fm, Lower Eocene Espuña-Valdelaparra Fms, Middle Eocene Malvariche-Cánovas Fms, Lowermost Oligocene As Fm, Upper Oligocene-Lower Aquitanian Bosque Fm, Upper Oligocene-Aquitanian Río Pliego Fm, Burdigalian El Niño Fm) and an evaluation has been performed to obtain four parameters: the scientific value, the educational and touristic potential, and the degradation risk. The firsts three parameters obtained values above 50 being considered of “high” or “very high” interest (“very high” in most of the cases). The last parameter shows always values below 50 indicating a “moderate” or “low” risk of degradation. The obtained values allow us considering the tectono-sedimentary evolution of this basin worthy of being proposed as a geological heritage.


GeoArabia ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 91-124 ◽  
Author(s):  
Adel R Moustafa ◽  
Ati Saoudi ◽  
Alaa Moubasher ◽  
Ibrahim M Ibrahim ◽  
Hesham Molokhia ◽  
...  

ABSTRACT An integrated surface mapping and subsurface study of the Bahariya Depression aided the regional subsurface interpretation. It indicated that four major ENE-oriented structural belts overlie deep-seated faults in this part of the ‘tectonically stable’ area of Egypt. The rocks of the Bahariya area were deformed in the Late Cretaceous, post-Middle Eocene, and Middle Miocene-and subsurface data indicated an early Mesozoic phase of normal faulting. The Late Cretaceous and post-Middle Eocene deformations reactivated the early normal faults by oblique slip and formed a large swell in the Bahariya region. The crest was continuously eroded whereas its peripheries were onlapped by Maastrichtian and Tertiary sediments. The tectonic evolution of the Bahariya region shows great similarity to the deformation of the ‘tectonically unstable’ area of the northern Western Desert where several hydrocarbon fields have been discovered. This similarity may indicate that the same phases of deformation could extend to other basins lying in the ‘tectonically stable’ area, such as the Asyut, Dakhla, Nuqura, and El Misaha basins.


2021 ◽  
Author(s):  
Bojan Otoničar

The studied palaeokarst corresponds to an uplifted peripheral foreland bulge when Upper Cretaceous diagenetically immature eugenetic carbonates were subaerially exposed, karstified and subsequently overlain by upper Paleocene/lower Eocene palustrine limestone. Among the subsurface paleokarstic features, both vadose and phreatic forms occur.  The phreatic caves/cavities include features characteristic of the mixing zone speleogenesis at the interface between freshwater (brackish water) lenses and the underlying seawater. They were found in various positions with respect to the paleokarstic surface, the deepest being about 75 m below the surface. Three indistinct horizons of cavities/caves and intermediate vugs were recognized. Subsequently, all cavities were completely filled with detrital sediments and speleothems in the phreatic and vadose zones. In general, the phreatic cavities of the lower two horizons are geopetally filled with mudstone derived from incomplete dissolution of the host rock and overlain by coarse-grained, blocky calcite. Shallower below the paleokarst surface, a large phreatic cave of the third horizon is filled with flowstone overlain by reddish micritic carbonate sediment with intercalated calcite rafts. In the upper part of the cave, sediments derived from the paleokarst surface are gradually becoming more abundant. Vadose channels, which may also intersect the cave sediments, are mainly filled with "pedogenic" material derived from the paleokarst surface. Immediately prior to marine transgression over the paleokarst surface, some cavities were filled with marine-derived microturbidites. In general, the diversity of cave fills and the amount of surface material decrease with distance from the paleokarst surface. Below the paleokarst surface, the δ13C and δ18O values of a host rock and cavity deposits show good correlation with trends significant for meteoric diagenesis. It is shown that deposits associated with phreatic caves can be of great importance for the study of the speleogenetic, geomorphological and hydrogeological evolution of certain palaeokarst regions.


Sign in / Sign up

Export Citation Format

Share Document