A Late Pleistocene-Holocene natural seismograph along the Boconó Fault (Mérida Andes, Venezuela): the moraine-dammed Los Zerpa paleo-lake

2006 ◽  
Vol 177 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Eduardo Carrillo ◽  
Franck A. Audemard M. ◽  
Christian Beck ◽  
Michel Cousin ◽  
François Jouanne ◽  
...  

Abstract The Boconó Fault system is a major active tectonic feature accommodating an important part of the dextral relative motion between the Caribbean Plate and northern South-America. The main trace follows an axial valley running SW-NE within the Mérida Andes (northwestern Venezuela), and crosscuts a series of moraines related to late Pleistocene glaciers developments and retreats, at an altitude between 2600 and 5000 m. Several lakes were generated after the last retreat (between the Late Glacial Maximum –LGM– and the Younger Dryas re-advance), dammed by lateral and frontal moraines. Among them, the Los Zerpa moraine system yielded rich outcrops ranging from an upstream very coarse torrential to deltaic fill, to a downstream clayey-silty horizontal laminated lacustrine accumulation; a fore-set-type heterogeneous “prograding” body links the two sets. The whole system, as well as the surrounding moraines, underwent successive major earthquakes during the Late Glacial/lower Holocene period as evidenced by co-seismic scarps in the moraines, migrations of the outlet, and associated sagponds. Besides active faulting affecting both the moraines and the sedimentary fill, the latter –main purpose of our detail study– exhibits various evidence of strong disturbances which we relate to seismic shaking, such as: i) successive unconformities with co-seismic slips along fractures in the coarse proximal sediments; ii) successive dip changes, discontinuities, and slumps in the foreset-like set; iii) slumps with basal liquefaction, syn-sedimentary fractures, and instantaneous re-sedimentation in the fine-grained laminated accumulation. Lateral (temporal) correlations are established between the successive disturbances detected in the three situations; in turn, these sedimentary events are correlated with seismic activity of the Boconó Fault main trace. Thus, the whole paleo-lake may be considered as a natural seismograph which worked during several thousands years, after the end of the LGM and during early Holocene.

1992 ◽  
Vol 38 (3) ◽  
pp. 359-370 ◽  
Author(s):  
Constance Sancetta ◽  
Michell Lyle ◽  
Linda Heusser ◽  
Rainer Zahn ◽  
J.Platt Bradbury

AbstractA core 120 km off the coast of southern Oregon was examined for changes in lithology, diatoms, and pollen over the past 30,000 yr. Primary production during the late Pleistocene was about half that of the Holocene. Evidence from diatoms and pollen indicates that summer upwelling was much weaker, implying an absence of strong northerly winds. Early Pliocene diatoms found throughout the late Pleistocene section were probably derived from diatomites east of the Cascades and provide evidence for strong easterly winds over a dry continental interior. The findings verify predictions of a climate model based on glacial maximum conditions. There is no compelling evidence for a climatic reversal corresponding to the European Younger Dryas chron. During the early Holocene (9000−7000 yr B.P.) there may have been years when winds were insufficiently strong to support upwelling, so that warm stratified waters lay closer to the coast.


2006 ◽  
Vol 58 (2-3) ◽  
pp. 217-228 ◽  
Author(s):  
Andrew J. Stumpf ◽  
Bruce E. Broster ◽  
Victor M. Levson

Abstract A depositional framework for late Pleistocene sediments in central British Columbia was developed from the composite stratigraphy of glacial sediments found in the Bulkley River region. Nonglacial deposits correlated to the Olympia Nonglacial Interval, are overlain in succession by sub-till, ice-advance sediments, Late Wisconsinan (Fraser Glaciation) till, and late-glacial sediments. Due to local erosion and depositional variability, some of the units are not continuous throughout the region and differ locally in their thickness and complexity. At the onset of the Fraser Glaciation, ice advance was marked by rising base levels in rivers, lake ponding, and ice marginal subaqueous deposition. Physiography and glacier dynamics influenced the position of drainage outlets, direction of water flow, and ponding. The region was completely ice covered during this glaciation and ice-flow directions were variable, being dominantly influenced by the migrating position of ice divides. Deglaciation was marked by the widespread deposition of fine-grained sediments in proglacial lakes and glaciofluvial sands and gravels at locations with unrestricted drainage.


2013 ◽  
Vol 80 (3) ◽  
pp. 482-494 ◽  
Author(s):  
Julien Carcaillet ◽  
Isandra Angel ◽  
Eduardo Carrillo ◽  
Franck A. Audemard ◽  
Christian Beck

In the tropical Mérida Andes (northwestern Venezuela), glacial landforms were found at altitudes between 2600 and 5000 m, corresponding to 600 km2 of ice cover during the maximum glacial extension. However, the lack of sufficient absolute age data prevents detailed reconstruction of the timing of the last deglaciation. On the northwestern flank of the Mucuñuque Massif, successive moraines and striated eroded basement surfaces were sampled for cosmogenic 10Be investigation. Their compilation with published data allows the establishment of a detailed chronology of the post-LGM glacier history. The oldest moraines (18.1 and 16.8 ka) correspond to the Oldest Dryas. Successive moraine ridges indicate stops in the overall retreat between the LGM and the Younger Dryas. The cold and short Older Dryas stadial has been identified. Results indicate that most of the ice withdrew during the Pleistocene. The dataset supports an intensification of the vertical retreat rate from ~ 25 m/ka during the late Pleistocene to ~ 310 m/ka during the Pleistocene/Holocene. Afterwards, the glacier was confined and located in the higher altitude zones. The altitude difference of the Younger Dryas moraines in the Mucubají, La Victoria and Los Zerpa valleys indicates a strong effect of valley orientation on the altitude of moraine development.


2018 ◽  
Vol 1 (1) ◽  
pp. 58
Author(s):  
Robert Alexander Pyron

We live in an unprecedented age for systematics and biodiversity studies. Ongoing global change is leading to a future with reduced species richness and ecosystem function (Pereira, Navarro, & Martins, 2012). Yet, we know more about biodiversity now than at any time in the past. For squamates in particular, we have range maps for all species (Roll et al., 2017), phylogenies containing estimates for all species (Tonini, Beard, Ferreira, Jetz, & Pyron, 2016), and myriad ecological and natural-history datasets for a large percentage of species (Meiri et al., 2013; Mesquita et al., 2016). For neotropical snakes, a recent synthesis of museum specimens and verified localities offers a fine-grained perspective on their ecogeographic distribution in Central and South America, and the Caribbean (Guedes et al., 2018).


1962 ◽  
Vol 12 (1) ◽  
pp. 9-17
Author(s):  
Gerhard Lang

Abstract. Based upon newer papers a brief summary is given on Late-glacial and Pre-boreal vegetational history at the western and northern border of the Alps; the effects of the Bölling- and especially the Alleröd-oscillation are demonstrated. Proceeding of that the different results by H. Zoller (I960) in Southern Switzerland are examined and the arguments for another dating of his two Late-glacial pollen diagramms are discussed. According to that the first afforestation in the lowlands at the southern border of the Alps occured not in the Allerod but already in the Boiling period; the „Piottino-oscillation", associated with the Gschnitz-Stadium, is probably not a new discovered Pre-boreal climatic oscillation, but corresponds to the Alleröd-oscillation. Therefore it seems not necessary to doubt the synchronism of Younger Dryas and Schlußvereisung in the Alps.


2012 ◽  
Vol 78 (2) ◽  
pp. 353-362 ◽  
Author(s):  
Torben C. Rick ◽  
John S. Wah ◽  
Jon M. Erlandson

AbstractAt the close of the Pleistocene, fire regimes in North America changed significantly in response to climate change, megafaunal extinctions, anthropogenic burning and possibly, even an extraterrestrial impact. On California's Channel Islands, researchers have long debated the nature of late Pleistocene “fire areas,” discrete red zones in sedimentary deposits, interpreted by some as prehistoric mammoth-roasting pits created by humans. Further research found no evidence that these red zones were cultural in origin, and two hypotheses were advanced to explain their origin: natural fires and groundwater processes. Radiocarbon dating, X-ray diffraction analysis, and identification of charcoal from six red zones on Santa Rosa Island suggest that the studied features date between ~ 27,500 and 11,400 cal yr BP and resulted from burning or heating, not from groundwater processes. Our results show that fire was a component of late Pleistocene Channel Island ecology prior to and after human colonization of the islands, with no clear evidence for increased fire frequency coincident with Paleoindian settlement, extinction of pygmy mammoths, or a proposed Younger Dryas impact event.


Author(s):  
Albert C. Goodyear ◽  
Christopher R. Moore

This chapter reviews the significant features of early prehistoric occupations of the Southeastern U.S. Coastal Plain. Along with the Pleistocene age archaeological sites, salient aspects of the geology, including sea level positions, are presented. Possible Pre-Clovis sites dating from pre-LGM to late Pleistocene times are considered. Clovis is seen to have a Coastal Plain settlement focus that includes the now-drowned shelf. The dramatic onset of the Younger Dryas and its potential effects on people, including the “Younger Dryas Impact Hypothesis,” are reviewed.


2019 ◽  
Vol 15 (2) ◽  
pp. 713-733 ◽  
Author(s):  
Johannes Hepp ◽  
Lorenz Wüthrich ◽  
Tobias Bromm ◽  
Marcel Bliedtner ◽  
Imke Kathrin Schäfer ◽  
...  

Abstract. Causes of the Late Glacial to Early Holocene transition phase and particularly the Younger Dryas period, i.e. the major last cold spell in central Europe during the Late Glacial, are considered to be keys for understanding rapid natural climate change in the past. The sediments from maar lakes in the Eifel, Germany, have turned out to be valuable archives for recording such paleoenvironmental changes. For this study, we investigated a Late Glacial to Early Holocene sediment core that was retrieved from the Gemündener Maar in the Western Eifel, Germany. We analysed the hydrogen (δ2H) and oxygen (δ18O) stable isotope composition of leaf-wax-derived lipid biomarkers (n-alkanes C27 and C29) and a hemicellulose-derived sugar biomarker (arabinose), respectively. Both δ2Hn-alkane and δ18Osugar are suggested to reflect mainly leaf water of vegetation growing in the catchment of the Gemündener Maar. Leaf water reflects δ2H and δ18O of precipitation (primarily temperature-dependent) modified by evapotranspirative enrichment of leaf water due to transpiration. Based on the notion that the evapotranspirative enrichment depends primarily on relative humidity (RH), we apply a previously introduced “coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach” to reconstruct the deuterium excess of leaf water and in turn Late Glacial–Early Holocene RH changes from our Gemündener Maar record. Our results do not provide evidence for overall markedly dry climatic conditions having prevailed during the Younger Dryas. Rather, a two-phasing of the Younger Dryas is supported, with moderate wet conditions at the Allerød level during the first half and drier conditions during the second half of the Younger Dryas. Moreover, our results suggest that the amplitude of RH changes during the Early Holocene was more pronounced than during the Younger Dryas. This included the occurrence of a “Preboreal Humid Phase”. One possible explanation for this unexpected finding could be that solar activity is a hitherto underestimated driver of central European RH changes in the past.


Sign in / Sign up

Export Citation Format

Share Document