scholarly journals Investigation on Hydraulic Fracturing and Cutting Roof Pressure Relief Technology for Underground Mines: A Case Study

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Qingliang Chang ◽  
Xingjie Yao ◽  
Xiangyu Wang ◽  
Sen Yang ◽  
Yuantian Sun

Abstract Using hydraulic fracturing for cutting roof pressure is a critical technology to protect coal pillars. In this paper, based on the engineering background of 18506 working face in the Xiqu Coal Mine, using the methods of theoretical analysis, numerical simulation, and field measurement, a reasonable coal pillar width and practical parameters of hydraulic fracturing are given. The results show that roof cutting can significantly increase the stress in goaf and relieve the advanced pressure of the working face. Taking 18506 working face as the research object, the industrial test is carried out, and the surrounding rock control scheme of hydraulic fracturing and roof cutting is put forward, the mine pressure monitoring results show that the auxiliary roadway of 18506 working face reaches a stable state within 20 days, the deformation and damage degree of roadway surrounding rock are small, and the integrity of surrounding rock is improved.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xie Fuxing

The gob-side roadway of 130205, a large-mining-height working face in the Yangchangwan coal mine, was investigated in terms of the mine pressure law and support technology for large mining heights and narrow coal pillars for mining roadways. The research included field investigations, theoretical analysis, numerical simulation, field tests, and other methods. This paper analyzes the form of movement for overlying rock structure in a gob-side entry with a large mining height and summarizes the stress state and deformation failure characteristics of the surrounding rock. The failure mechanism of the surrounding rock of the gob-side roadway and controllable engineering factors causing deformation were analyzed. FLAC3D numerical simulation software was used to explore the influence law of coal pillar width, working face mining height, and mining intensity on the stability of the surrounding rock of the gob-side roadway. Ensuring the integrity of the coal pillar, improving the coordination of the system, and using asymmetric support structures as the core support concept are proposed. A reasonably designed support scheme for the gob-side roadway of the working face for 130205 was conducted, and a desirable engineering effect was obtained through field practice verification.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Fulian He ◽  
Zheng Zheng ◽  
Hengzhong Zhu ◽  
Bo Yang

The principal stress difference is introduced as a new evaluation index in order to better understand the failure mechanism of roadways affected by upper coal pillars and characterize failure of rock mass. Compared with traditional methods, it facilitates quantitative analysis. Moreover, we combine the semiplane theory and we obtain the stress distribution on the coal pillar’s bedrock and the strengthening control area from the “change point” position along a 21 m horizontal line. The influence of multiple stresses induced from mining on a roadway is analyzed. It is found that rock failure is most likely while mining the 051606 working face, followed by mining the 051604 working face, and the stress influence on the upper pillar has the lowest failure probability. In addition, based on the asymmetry of the surrounding rock stress distribution, this study proposes strengthening control technology of surrounding rock on the basis of a highly stressed bolting support and anchor cable, adding to the steel ladder beam, steel mesh, and shed support’s protective function to the roadway’s roof and ribs. Finally, through field observations, it is concluded that the roadway deformation is within the controllable range.


Author(s):  
Shukun Zhang ◽  
Lu Lu ◽  
Ziming Wang ◽  
Shuda Wang

AbstractA study of the deformation of the surrounding rock and coal pillars near a fault under the influence of mining is conducted on a physical model for the design of coal pillars to support and maintain the roofs of adjacent fault roadways. This research is based on the 15101 mining face in the Baiyangling Coal Mine, Shanxi, China, and uses simulation tests similar to digital speckle test technology to analyse the displacement, strain and vertical stress fields of surrounding rocks near faults to determine the influence of the coal pillar width. The results are as follows. The surrounding rock of the roadway roof fails to form a balance hinge for the massive rock mass. The vertical displacement, vertical strain and other deformation of the surrounding rock near the fault increase steeply as the coal pillar width decreases. The steep increase in deformation corresponds to a coal pillar width of 10 m. When the coal pillar width is 7.5 m, the pressure on the surrounding rock near the footwall of the fault suddenly increases, while the pressure on the hanging wall near the fault increases by only 0.35 MPa. The stress of the rock mass of the hanging wall is not completely shielded by the fault, and part of the load disturbance is still transmitted to the hanging wall via friction. The width of the fault coal pillars at the 15101 working face is determined to be 7.5 m, and the monitoring data verify the rationality of the fault coal pillars.


2021 ◽  
Author(s):  
Lili Zheng ◽  
Zheng Gao

The old mining area in Pingdingshan coalfield has the following problems: long mining service life, many remaining coal pillars, and great difficulty in mining; to extend the service life of the mine, realize cost saving and efficiency increasing, it is urgent to recover the remaining coal pillars, but the mining of isolated island face faces the problem of reasonable retention of waterproof coal pillars, if the protection is not good, it is easy to cause mine water damage and increase the mining cost. Therefore, in view of the practical engineering problems faced by the field, aiming at eliminating or reducing the goaf water disaster, this paper adopts numerical simulation research methods to optimize the original design scheme and carry out comparative analysis, dynamically reappear the surrounding rock stress field, displacement field and plastic failure law under multi face mining and roadway mining, and carry out engineering practice application. The results show that there is a certain thickness of elastic core area before and after mining with 25m coal pillar width. The deformation of surrounding rock is small, which is conducive to roadway maintenance, without obvious stress concentration. It can meet the actual needs of the project. The mining face has achieved safe mining, without water inrush accident in the goaf, and the coal resources have been recovered to the maximum extent. The research results are left over to similar mining areas in China The safe recovery of coal pillar can be used for reference.


2020 ◽  
Vol 12 (3) ◽  
pp. 1197 ◽  
Author(s):  
Zhijun Tian ◽  
Zizheng Zhang ◽  
Min Deng ◽  
Shuai Yan ◽  
Jianbiao Bai

Gob-side entry retained technology is of great significance to develop coal mining industry sustainably, which can improve the coal recovery rate by mining without the coal pillar. However, scholars and researchers pay little attention to the gob-side entry retained with soft roof, floor, and seam in thin coal seams. In this study, the difficulties and key points of surrounding rock control for gob-side entry retained with soft roof, floor, and seam in thin coal seams were firstly proposed. Secondly, the mechanical model of the interaction between the roadside backfill body and the roof for gob-side entry retained with soft roof, floor, and seam in thin coal seams was established, and the relevant parameters were designed. Finally, the above results were verified by the engineering practice of gob-side entry retained technology and the monitoring of mine pressure on the 1103 working face of the Heilong Coal Mine. Moreover, the effect factors of surrounding rock stability for gob-side entry retained with soft roof, floor, and seam in thin coal seams were discussed using the discrete element method. The results could provide guidance for gob-side entry retained with soft roof, floor, and seam in thin coal seams under similar geological conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yajun Wang ◽  
Haosen Wang ◽  
Manchao He ◽  
Qi Wang ◽  
Yafei Qiao ◽  
...  

Noncoal pillar mining with automatic formation of a roadway is a new coal mining method that is tailored to improve the coal resource recovery rate and reduce the investment in roadway tunneling. Using this proposed method, a reuse entry is formed by roof cutting instead of tunneling. In this paper, the S1201-II working face of the Ningtiaota Coal Mine was used as a case study. The stress distribution of surrounding rock and the roof deformation characteristics of the reused entry during the mining process of the second working face were studied through FLAC3D numerical simulations combined with field measurements. The results indicate that the zone close to the reused entry led to higher stress in advance. If this stress is superimposed with the lateral pressure of the adjacent mined working face, it will be more difficult to maintain the reused entry. In the engineering case study described here, the reused entry created a stress increase zone and a severe deformation zone in the range of 0–80 m in front of the working face, and its range was approximately 37.5% larger than an ordinary entry. The stress peak in the stress increase zone increased by approximately 34.7% over that of an ordinary entry. The maximum amount of deformation within the severe deformation zone increased by 94.4% over that of an ordinary entry. To properly control the surrounding rock stress and deformation of the reused entry, a dynamic pressure bearing support in front of the working face with adaptability to the large roof deformation and high support strength is proposed here. Field application results showed that the final roof deformation with the dynamic pressure bearing support can be satisfactorily controlled within 110∼130 mm. These findings can provide a reference for researchers and field engineering technicians when engaging in the support work of reused entry.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Dongdong Chen ◽  
En Wang ◽  
Shengrong Xie ◽  
Fulian He ◽  
Long Wang ◽  
...  

Multi-coal-seam mining creates surrounding rock control difficulties, because the mining of a coal face in one seam can affect coal faces in another. We examine the effects of multi-coal-seam mining on the evolution of the deviatoric stress distribution and plastic zone in the roadway surrounding rock. In particular, we use numerical simulation, theoretical calculation, drilling detection, and mine pressure observation to study the distribution and evolution characteristics of deviatoric stress on Tailgate 8709 in No. 11 coal seam in Jinhuagong mine when the N8707 and N8709 coal faces in No. 7-4 coal seam and the N8707 and N8709 coal faces in No. 11 coal seam are mined. The evolution laws of deviatoric stress and the plastic zone of roadway surrounding rock in the advance and behind sections of the coal face are studied, and a corresponding control technology is proposed. The results show that the peak value of deviatoric stress increases with the advance of the coal face, and the positions of the peak value of deviatoric stress and the plastic zone become deeper. The deflection angle of the peak stress after mining at each coal face and the characteristics of the peak zone of deviatoric stress and the plastic zone of the roadway surrounding rock under the disturbance of multi-coal-seam mining are determined. In conclusion, the damage range in the roadway roof in the solid-coal side and coal pillar is large and must be controlled. A combined support technology based on high-strength and high pretension anchor cables and truss anchor cables is proposed; long anchor cables are used to strengthen the support of the roadway roof in the solid-coal side and coal pillar. The accuracy of the calculated plastic zone range and the reliability of the combined support technology are verified through drilling detection and mine pressure observation on site. This research can provide a point of reference for roadway surrounding rock control under similar conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Dongdong Chen ◽  
Chunwei Ji ◽  
Shengrong Xie ◽  
En Wang ◽  
Fulian He ◽  
...  

Aiming at the problem of large deformation and instability failure and its control of soft coal and soft roof roadway under intense mining, laboratory experiments, theoretical calculations, Flac3D numerical simulation, borehole peeping, and pressure observation were used to study the deflection characteristics of the deviatoric stress of the gas tailgate and the distribution and failure characteristics of the plastic zone in the mining face considering the strain softening characteristics of the roof and coal of roadway, and then the truss anchor cable-control technology is proposed. The results show the following: (1) The intense mining influence on the working face will deflect the peak deviatoric stress zone (PDSZ) of the surrounding rock of the gas tailgate. The influence distance of PDSZ is about 20 m in advance and 60 m in lag; the PDSZ at the gob side of the roadway is located in the range of 3–5.5 m from the surface of the coal pillar, while the coal wall side is mainly located in the range of 3–4.5 m at the shoulder corner and bottom corner of the solid coal. (2) The intense mining in the working face caused the nonuniform expansion of the surrounding rock plastic area of the gas tailgate. The two shoulder angles of the roadway and the bottom of the coal pillar have the largest damage range, and the maximum damage location is the side angle of the coal pillar (5 m). Angle and bottom angle of coal pillar are the key points of support control. (3) The plastic failure line of the surrounding rock of the gas tailgate is always between the inner and outer contours of the PDSZ, and the rock mass in the PDSZ is in a stable and unstable transition state, so the range of anchor cable support should be cross plastic failure line. (4) The theoretical calculations and numerical simulation results agree well with the drilling peep results. Based on the deflection law of the PDSZ and the expansion characteristics of the plastic zone, a truss anchor cable supporting system with integrated locking and large-scale support function is proposed to jointly control the roof and the two sides, which effectively solves the problem of weak surrounding rock roadway under severe mining deformation control problems realizing safety and efficient production in coal mines under intense mining.


2013 ◽  
Vol 295-298 ◽  
pp. 2913-2917
Author(s):  
Xiang Yang Zhang ◽  
Min Tu

In order to study the stress distribution and its dynamic influence law while the protective layer mining, based on the transfer law of mining-induced stress in the coal seam floor and in front of the working face, using numerical simulation software to simulate the surrounding rock stress under the different pillar width mining conditions, and carried through the roadway deformation engineering practice observations. It is shown that reserved 110m coal pillar could weaken the impact on the front of the floor tunnel under the protective layer mining process. When the top liberated layer mining to reduce the impact of mining stress superposition, it should avoid the terminal lines on the two coal seams at the same location and may be staggered at least about 30m ~ 50m. And it obtained that the roadway deformation not only by mining impact, but also considering the geological environment surrounding rock conditions, tunnel position in which layers of rock, rock properties and other factors. The research guided the engineering practice successfully.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Haifeng Zhou ◽  
Qingxiang Huang ◽  
Yingjie Liu ◽  
Yanpeng He

To study the problems of dynamic load pressure and frame pressure caused by the concentration of stress by coal extraction pillars during the mechanized short-distance mining of goaves in shallow coal seams, a frame pressure accident, in the Shendong Shigetai Coal Mine, during the overlying of a fully mechanized mining goaf is taken as a research example. By applying the field measurement, theoretical analysis, and numerical simulation methods, we throughly analysed the working face coal pillar, got the regular pattern of fully mechanized overburden pressure, summarized a pillar of fully mechanized working face in the overburden strata movement regularity and development characteristics, analyzed the reason and mechanism of broken coal pillar, and put forward the corresponding prevention measures and management method. The results show that when the fully mechanized mining face enters the goaf by about 3 m, the pressure arches of the lower coal face and the upper goaf arising from the extracted coal overlap. When the vertical stress is greater than the supporting force of the hydraulic support and the coal wall, a roof ejection accident may occur.


Sign in / Sign up

Export Citation Format

Share Document