scholarly journals Sedimentary Evolution Characteristics of Fine-Grained Lithofacies under the High-Resolution Isochronous Shelf System: Insights from the Wufeng-Longmaxi Shales in the Sichuan Basin

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Guanping Wang ◽  
Zhijun Jin ◽  
Zongquan Hu ◽  
Guangxiang Liu ◽  
Tong Zhu ◽  
...  

Abstract The deposition and evolution of fine-grained sediments is a hot topic in fine-grained sedimentary rock studies and is important for accurately evaluating shale gas sweet spots. In this paper, the fine-grained deposition and evolution characteristics of the Wufeng-Longmaxi shales, major targets for Chinese shale gas exploration, were studied by using core observations, thin section analyses, scanning electron microscopy, geochemical analysis, and fossil identification. This work accurately identified six typical lithofacies; among them, the organic matter-rich siliceous shale facies (OMRSSF), the high-organic matter siliceous argillaceous shale facies (HOMSASF), and the medium-high organic matter low calcareous siliceous shale facies (M-HOMLCSASF) are favorable facies for shale gas exploration. The high-resolution isochronous unit in the shelf fine-grained sedimentary system was established, and the differential evolution of lithofacies in the system tract was discussed. The lithofacies deposition and differentiation in the transgressive system tract were controlled by the transgressive scale and tectonics under increasingly shallow water conditions. The lithofacies deposition and differentiation in the regressive system tract were controlled by tectonics and the preexisting lithofacies. The lithofacies in the regressive system tract had more frequent facies transitions and greater differentiation than those in the transgressive system tract, and they exhibited significant spatiotemporal inheritance. Sequential differential sedimentary sequences and symmetric differential sedimentary sequences were distinguished in the continental shelf sedimentary system. The lithofacies depocenters and subsidence centers were consistent in the transgressive system tract, while the tectonically active paleocontinent was important in the regression system tract. This study is of great significance for further high-resolution exploration of marine shale and improvement of the theory of shelf fine-grained sedimentary systems.

2021 ◽  
Author(s):  
Nasar Khan ◽  
Rudy Swennen ◽  
Gert Jan Weltje ◽  
Irfan Ullah Jan

<p><span><strong>Abstract:</strong> Reservoir assessment of unconventional reservoirs poses numerous exploration challenges. These challenges relate to their fine-grained and heterogeneous nature, which are ultimately controlled by depositional and diagenetic processes. To illustrate such constraints on shale gas reservoirs, this study focuses on lithofacies analysis, paleo-depositional and diagenetic evolution of the Paleocene Patala Formation at Potwar Basin of Pakistan. Integrated sedimentologic, petrographic, X-ray diffraction and TOC (total organic carbon) analyses showed that the formation contained mostly fine-grained carbonaceous, siliceous, calcareous and argilaceous siliciclastic-lithofacies, whereas carbonate microfacies included mudstone, wackestone and packstone. The silicious and carbonaceous lithofacies are considered a potential shale-gas system. The clastic lithofacies are dominated by detrital and calcareous assemblage including quartz, feldspar, calcite, organic matter and clay minerals with auxiliary pyrites and siderites. Fluctuations in depositional and diagenetic conditions caused  lateral and vertical variability in lithofacies. Superimposed on the depositional heterogeneity are spatially variable diagenetic modifications such as dissolution, compaction, cementation and stylolitization. The δ</span><sup>13</sup><span>C and δ</span><sup>15</sup><span>N stable isotopes elucidated that the formation has been deposited under anoxic conditions, which relatively enhanced the preservation of mixed marine and terrigenous organic matter. Overall, the Patala Formation exemplifies deposition in a shallow marine (shelfal) environment with episodic anoxic conditions.</span></p><p><strong>Keywords</strong><strong>:</strong> Lithofacies, Organic Matter, Paleocene, Potwar Basin, Shale Gas, Shallow Marine.</p>


Author(s):  
Jean Paul Herbin ◽  
Carla Müller ◽  
Jeannine R. Geyssant ◽  
Frédéric Mélières ◽  
Ian E. Penn ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Li Cuifang ◽  
Huang Xinglong ◽  
Shao Yubao ◽  
Dou Fengke

The shale layers of the Permian Shanxi Formation and Taiyuan Formation in the southwestern part of Shandong Province are marine-continental transitional sedimentary facies. When compared with the Ordos Basin, which was a typical breakthrough in marine-continental transitional shale gas exploration, the geological characteristics, exploration, and development prospects of marine-continental transitional shale gas in the southwestern section of Shandong Province are more defined. The shale gas deposits of the Shanxi and Taiyuan Formations in southwestern Shandong Province have the following geological characteristics. The sedimentary environments of Shanxi and Taiyuan Formations are considered to be stable and characterized with widely distributed organic-rich shale, which can be used as composite evaluation layers. The total thickness of the shale range is between 140 and 350 m, with an average of 230 m. The main types of organic matter in the Shanxi Formation are Type Ⅲ and Type Ⅱ2 kerogen, while the main types of organic matter in the Taiyuan Formation are rock types. The abundance and maturity of the organic matter are high, and the gas generating capacity is strong. The reservoir rock mineral composition is complex in the region. The clay mineral content is relatively high and the brittle mineral content is rich. Also, the shale fracturing ability is good. The region has the characteristics of a low porosity and low permeability reservoir, with relatively good reservoir capacity. Three primary points of interest have stably been developed within the region, which are located in the upper high water level system, near the initial flood surface, and the majority of flood surface, including a transgressive system tract and high level system tract. The total gas content is estimated to range between 0.03 and 4.47 m3/t, with an average of 0.30 m3/t. The shale gas resources are rich, including one favorable Class I location with an area of 819.06 km2 and a resource amount of 985.84 × 108 m3; four favorable Class Ⅱ locations with an area of 1,979.68 km2 and a resource amount of 2,278.14 × 108 m3; and five prospective locations with an area of 8,385.52 km2 and a resource amount of 7,299.48 × 108 m3. Therefore, the region was considered to have major exploration potential.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jiyoung Choi ◽  
Hyun Suk Lee ◽  
Yuri Kim ◽  
Omid H. Ardakani ◽  
Sung Kyung Hong

The Late Devonian Besa River Formation is an organic-rich shale sequence in Liard Basin, northeastern British Columbia, Canada, with significant natural gas reserves. High-resolution elemental geochemistry of three long continuous cored intervals of the Besa River Formation was used to better understand the paleodepositional environment of organic-rich intervals in this thick marine shale. The studied core intervals were divided into five chemostratigraphic units based on organic and inorganic geochemical proxies. The highest total organic carbon (TOC) content (up to 13 wt.%) was identified in the upper part of the Patry member (Unit III) within the Liard Basin. During the deposition of Unit III, low clastic influx and euxinic bottom conditions mostly contributed to the high accumulation of organic carbon. Moreover, a high productivity and organic influx may have increased organic-rich basinal sediments, which further depleted the seawater column oxygen content in the presence of a large amount of organic matter. This took place within the oxygen-deficient bottom water from the Patry–Exshaw stratigraphic units. This high TOC interval was most likely deposited through abundant biogenic silica production by radiolarians, thereby utilizing the supply of nutrients from the upwelling. Sea level change was also an important factor that controlled organic matter accumulation in the Besa River Formation. The transgression in sea level changed the residence time of the organic matter in oxic zones within the water column, which limited its supply in deeper water; this decreased the TOC content in Unit IV. Before the deposition, silica production collapsed and was replaced by terrestrial sedimentation of clay minerals in the upper part of the Exshaw member, which caused organic matter dilutions in Unit V (under 5 wt.%). These results provide new insights into the effects of relative sea level changes on redox conditions, productivity, and detrital flux, which are related to organic matter enrichment patterns and their geographic variations. Unit III is characterized by an organic-rich interval as well as an abundance of biogenic silica that is closely related to fracturing. Thus, Unit III is expected to have the highest shale gas potential in the Devonian Besa River Formation. The high-resolution geochemical data integrated with well log and/or seismic data can be used to determine the distribution of the perspective interval for shale gas production in the Liard Basin.


2018 ◽  
Vol 6 (4) ◽  
pp. SN133-SN151
Author(s):  
Xuefei Yi ◽  
Lei Zhao ◽  
Taizhong Duan ◽  
Yunfei Huang ◽  
Bo Chen

With the increasing interest on shale oil and shale gas around the world, it is essential to discover alternative economic shale gas fields outside the Fuling gas field, which is China’s first large-scale shale gas field with 100 billion cubic meters of reserves in the Sichuan Basin (China). Based on comprehensive analysis of dozens of black shale samples, the Wufeng Formation and the Lower Longmaxi Formation in the Huangying section of Wulong County showed good prospects for shale gas. An integrated study of petrology, organic geochemistry, trace element analysis, and sedimentology reveals that the sea level during the Early Silurian period was relatively high. Consequently, carbon-rich and high-silica lithofacies were deposited, corresponding to argillaceous-siliceous deepwater shelf microfacies. During deposition of the Guanyinqiao bed (latest Ordovician), the sea level was relatively low, resulting in the formation of moderately high carbon and high-silica shale facies, corresponding to argillaceous shallow shelf microfacies. A complete transgressive-regressive third-order sequence was recorded in the Longmaxi Formation. Carbon-rich and high-silica lithofacies, which are associated with carbonaceous deepwater shelf microfacies and siliceous-argillaceous deepwater shelf microfacies, respectively, dominated the transgressive system tract. Compared with the Fuling area with a record of high shale gas productivity, the Wufeng Formation and the transgressive system tract of the Longmaxi Formation in the study area demonstrate great potential for shale gas.


Author(s):  
William Krakow ◽  
Alec N. Broers

Low-loss scanning electron microscopy can be used to investigate the surface topography of solid specimens and provides enhanced image contrast over secondary electron images. A high resolution-condenser objective lens has allowed the low-loss technique to resolve separations of Au nucleii of 50Å and smaller dimensions of 25Å in samples coated with a fine grained carbon-Au-palladium layer. An estimate of the surface topography of fine grained vapor deposited materials (20 - 100Å) and the surface topography of underlying single crystal Si in the 1000 - 2000Å range has also been investigated. Surface imaging has also been performed on single crystals using diffracted electrons scattered through 10−2 rad in a conventional TEM. However, severe tilting of the specimen is required which degrades the resolution 15 to 100 fold due to image forshortening.


KURVATEK ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 71-82
Author(s):  
Wahyu Sasongko

Proses diagenesis yang terjadi pada batuan memiliki hubungan yang erat dengan konsep sikuen stratigrafi. Proses diagenesis awal (eogenesis) yang terbentuk pada suatu batuan dipengaruhi oleh posisi stratigrafi batuan tersebut dalam tataan sikuen stratigrafi. Eogenesis tersebut dapat diteliti dengan menggunakan data petrografi batupasir mengenai proses diagenesis yang terdapat pada batuan, dan juga dengan melihat posisi batuan dalam tataan sikuen stratigrafi. Formasi Nanggulan yang tersingkap di Kulon Progo, Yogyakarta merupakan salah satu formasi yang dengan beberapa interval litologi batupasir. Analisis mengenai sikuen stratigrafi Formasi Nanggulan telah diteliti sebelumnya dengan menggunakan analisis batuan inti. Studi lebih lanjut mengenai Formasi Nanggulan bertujuan untuk mengetahui karakteristik batupasir dan proses diagenesisnya, serta mencari hubungan antara proses diagenesis dan sikuen stratigrafi. Penelitian dilakukan dengan menggunakan analisis petrografi dari data batuan inti dan singkapan permukaan dengan tujuan untuk mengetahui hubungan antara diagenesis dan sikuen stratigrafi pada batupasir Formasi Nanggulan.Berdasarkan analisis petrografi terhadap diagenesis pada Formasi Nanggulan, dapat dikonfirmasi bahwa Formasi Nanggulan terdiri dari 3 system tract yaitu lowstand system tract (LST), transgressive system tract (TST), dan highstand system tract (HST). Tahapan proses diagenesis yaitu eogenesis, mesogenesis dan telogenesis telah mempengaruhi Formasi Nanggulan. Karakteristik diagenesis pada Formasi Nanggulan bervariasi sesuai dengan system tract dan marker batas sikuen pada tataan sikuen stratigrafi. Berdasaran penelitian ini dapat diketahui bahwa sikuen stratigrafi Formasi Nanggulan dapat dikonfirmasi dengan data diagenesis.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2679
Author(s):  
Yuying Zhang ◽  
Shu Jiang ◽  
Zhiliang He ◽  
Yuchao Li ◽  
Dianshi Xiao ◽  
...  

In order to analyze the main factors controlling shale gas accumulation and to predict the potential zone for shale gas exploration, the heterogeneous characteristics of the source rock and reservoir of the Wufeng-Longmaxi Formation in Sichuan Basin were discussed in detail, based on the data of petrology, sedimentology, reservoir physical properties and gas content. On this basis, the effect of coupling between source rock and reservoir on shale gas generation and reservation has been analyzed. The Wufeng-Longmaxi Formation black shale in the Sichuan Basin has been divided into 5 types of lithofacies, i.e., carbonaceous siliceous shale, carbonaceous argillaceous shale, composite shale, silty shale, and argillaceous shale, and 4 types of sedimentary microfacies, i.e., carbonaceous siliceous deep shelf, carbonaceous argillaceous deep shelf, silty argillaceous shallow shelf, and argillaceous shallow shelf. The total organic carbon (TOC) content ranged from 0.5% to 6.0% (mean 2.54%), which gradually decreased vertically from the bottom to the top and was controlled by the oxygen content of the bottom water. Most of the organic matter was sapropel in a high-over thermal maturity. The shale reservoir of Wufeng-Longmaxi Formation was characterized by low porosity and low permeability. Pore types were mainly <10 nm organic pores, especially in the lower member of the Longmaxi Formation. The size of organic pores increased sharply in the upper member of the Longmaxi Formation. The volumes of methane adsorption were between 1.431 m3/t and 3.719 m3/t, and the total gas contents were between 0.44 m3/t and 5.19 m3/t, both of which gradually decreased from the bottom upwards. Shale with a high TOC content in the carbonaceous siliceous/argillaceous deep shelf is considered to have significant potential for hydrocarbon generation and storage capacity for gas preservation, providing favorable conditions of the source rock and reservoir for shale gas.


Sign in / Sign up

Export Citation Format

Share Document