scholarly journals Morphostructural Setting and Tectonic Evolution of the Central Part of the Sicilian Channel (Central Mediterranean)

Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Dario Civile ◽  
Giuliano Brancolini ◽  
Emanuele Lodolo ◽  
Edy Forlin ◽  
Flavio Accaino ◽  
...  

Abstract The Plio-Quaternary tectonic evolution of the central sector of the Sicilian Channel and the resulting morphostructural setting have been analyzed using a large geophysical dataset consisting of multichannel seismic profiles, which some of them never published, and available bathymetric data. This area hosts two regional-scale tectonic domains that registered the complex pattern of deformation occurred since the Early Pliocene: (1) the Sicilian Channel Rift Zone (SCRZ), which can be divided into a western sector formed by the Pantelleria graben (PG) and in a eastern one represented by the Linosa and Malta grabens (LG and MG) and (2) the Capo Granitola-Sciacca Fault Zone (CGSFZ), a NNE-oriented lithospheric transfer zone that crosses the Sicilian Channel from the Sicily coast to the Linosa Island, of which only its northern part has been studied to date. Data interpretation has allowed achieving the following outcomes: (i) the presence of an alternation of basins and structural highs forming a NNE-oriented separation belt between the western and eastern sectors of the SCRZ, and interpreted as the shallow expression of the southern part of the CGSFZ; (ii) a NE-oriented tectonic lineament separating the MG in a northern and southern part, and interpreted as the southern prosecution of the Scicli-Ragusa Fault System; (iii) the presence of syn-rift deposits in the Plio-Quaternary fill of the grabens, suggesting that the opening of the grabens of the SCRZ was coeval, and started since Early Pliocene in the framework of a NW-oriented right-lateral transtensional mega-shear zone; (iv) continental rifting ended around the Early Calabrian, during which extensional tectonics dominated along the separation belt; (v) the CGSFZ conditioned the SCRZ configuration at a regional scale, leading to the development of the PG in the western sector and of the LG and MG in the eastern one; and (vi) after the Early Calabrian, the PG and the southern MG followed a different tectonic evolution with respect to the LG and northern MG. The syn-rift deposits of the PG and southern MG were sealed by an undeformed post-rift succession, while the LG and the northern MG suffered a basin inversion that ended around the Latest Calabrian time. During this stage, the separation belt was affected by a transpressional tectonics. At present, the grabens of the Sicilian Channel seem to be tectonically inactive, while the CGSFZ represents an active tectonic domain.

2021 ◽  
pp. 1-64
Author(s):  
Oussama Abidi ◽  
Kawthar Sebei ◽  
Adnen Amiri ◽  
Haifa Boussiga ◽  
Imen Hamdi Nasr ◽  
...  

The Middle to Upper Eocene series are characterized by multiple hiatuses related to erosion, non-deposition or condensed series in the Cap Bon and Gulf of Hammamet provinces. We performed an integrated study taking advantage from surface and subsurface geology, faunal content, borehole logs, electrical well logs, vertical seismic profiles and surface seismic sections. Calibrated seismic profiles together with borehole data analysis reveal unconformities with deep erosion, pinchouts, normal faulting and basin inversion which are dated Campanian, intra-Lutetian and Priabonian compressive phases; these events were also described at the regional scale in Tunisia. Tectonics, sea level fluctuations and climate changes closely controlled the depositional process during the Middle to Upper Eocene time. The depositional environment ranges from internal to outer platform separated by an inherited paleo-high. We determine eight third order sequences characterizing the interaction between tectonic pulsations, sea level changes and the developed accommodation space within the Middle to Upper Eocene interval. We correlate the obtained results of the Cap Bon-Gulf of Hammamet provinces with the published global charts of sea-level changes and we find a good correspondence across third order cycles. Model-based 3D inversion proved to be a solution to model the lateral and vertical lithological distribution of the Middle to Upper Eocene series.


2020 ◽  
Author(s):  
Laura Gómez de la Peña ◽  
César Ranero ◽  
Eulàlia Gràcia ◽  
Guillermo Booth-Rea

<p>The Alboran Basin is the westernmost of the Mediterranean basins. It is composed of different sub-basins and connects toward the east with the Algero-Balearic Basin. Regional studies of these basins are mainly from the ´90s, but the restricted seismic coverage and generally low quality (old acquisition and processing methods) of the seismic profiles were not enough to perform a detailed analysis of the entire sediment infill. More recent works characterize in detail a particular area, but the correlation between the different sub-basins remained beyond the scope of those works. Furthermore, these recent works are usually focused only on the Messinian and younger stratigraphy. Thus, the correlation of the sediment history across the entire region and its integration with the regional tectonic evolution has not been achieved. This results in a bunch of models, different for each sub-basin and not always coherent among them, which makes difficult the understanding of the geodynamic evolution of the region</p><p>Based on ~4500 km of new and reprocessed multichannel seismic profiles, together with well and dredge data, we are able to review the westernmost Mediterranean stratigraphy at a regional scale. We have correlated the sediment units deposited since the beginning of the formation of the different sub-basins, and we present for the first time a coherent stratigraphy and large-scale tectonic evolution of the whole region. The results provide the information to test and refine models of the geodynamic evolution of the westernmost Mediterranean.</p><p>The main objectives are: (i) To define a seismostratigraphy framework for the entire region, integrating previous interpretations and correlating the sedimentary units among depocentres; (ii) To propose an evolutionary model for each sub-basin; and (iii) To integrate all sub-basins results in an updated general kinematic model for the westernmost Mediterranean region.</p><p>Main results shed light on the particular evolution of each sub-basin as well as in the entire basin evolution. The Late Oligocene - Miocene represents the formation stage of the basins, controlled by the evolution of the Gibraltar subduction system. During this period, each sub-basin shows different sedimentary units, supporting differences in their evolution. The Plio-Quaternary corresponds to the deformation stage, driven by the Eurasian-African plates convergence. The Plio-Quaternary sediments are covering the entire area, instead of being restricted to the sub-basins. This latter period is characterized by contractional and strike-slip deformation, accommodated mainly by re-activation of pre-existing crustal structures.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Andrea Di Capua ◽  
Federica Barilaro ◽  
Gianluca Groppelli

This work critically reviews the Eocene–Oligocene source-to-sink systems accumulating volcanogenic sequences in the basins around the Alps. Through the years, these volcanogenic sequences have been correlated to the plutonic bodies along the Periadriatic Fault System, the main tectonic lineament running from West to East within the axis of the belt. Starting from the large amounts of data present in literature, for the first time we present an integrated 4D model on the evolution of the sediment pathways that once connected the magmatic sources to the basins. The magmatic systems started to develop during the Eocene in the Alps, supplying detritus to the Adriatic Foredeep. The progradation of volcanogenic sequences in the Northern Alpine Foreland Basin is subsequent and probably was favoured by the migration of the magmatic systems to the North and to the West. At around 30 Ma, the Northern Apennine Foredeep also was fed by large volcanogenic inputs, but the palinspastic reconstruction of the Adriatic Foredeep, together with stratigraphic and petrographic data, allows us to safely exclude the Alps as volcanogenic sources. Beyond the regional case, this review underlines the importance of a solid stratigraphic approach in the reconstruction of the source-to-sink system evolution of any basin.


Tectonics ◽  
2011 ◽  
Vol 30 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
F. Mirabella ◽  
F. Brozzetti ◽  
A. Lupattelli ◽  
M. R. Barchi

2021 ◽  
Author(s):  
Matthieu Ribot ◽  
Yann Klinger ◽  
Edwige Pons-Branchu ◽  
Marthe Lefevre ◽  
Sigurjón Jónsson

<p>Initially described in the late 50’s, the Dead Sea Fault system connects at its southern end to the Red Sea extensive system, through a succession of left-stepping faults. In this region, the left-lateral differential displacement of the Arabian plate with respect to the Sinai micro-plate along the Dead Sea fault results in the formation of a depression corresponding to the Gulf Aqaba. We acquired new bathymetric data in the areas of the Gulf of Aqaba and Strait of Tiran during two marine campaigns (June 2018, September 2019) in order to investigate the location of the active faults, which structure and control the morphology of the area. The high-resolution datasets (10-m posting) allow us to present a new fault map of the gulf and to discuss the seismic potential of the main active faults.</p><p>We also investigated the eastern margin of the Gulf of Aqaba and Tiran island to assess the vertical uplift rate. To do so, we computed high-resolution topographic data and we processed new series of U-Th analyses on corals from the uplifted marine terraces.</p><p>Combining our results with previous studies, we determined the local and the regional uplift in the area of the Gulf of Aqaba and Strait of Tiran.</p><p>Eventually, we discussed the tectonic evolution of the gulf since the last major change of the tectonic regime and we propose a revised tectonic evolution model of the area.</p><p> </p>


2006 ◽  
Vol 3 (3) ◽  
pp. 637-669 ◽  
Author(s):  
S. Natale ◽  
R. Sorgente ◽  
S. Gaberšek ◽  
A. Ribotti ◽  
A. Olita

Abstract. Ocean forecasts over the Central Mediterranean, produced by a near real time regional scale system, have been evaluated in order to assess their predictability. The ocean circulation model has been forced at the surface by a medium, high or very high resolution atmospheric forcing. The simulated ocean parameters have been compared with satellite data and they were found to be generally in good agreement. High and very high resolution atmospheric forcings have been able to form noticeable, although short-lived, surface current structures, due to their ability to detect transient atmospheric disturbances. The existence of the current structures has not been directly assessed due to lack of measurements. The ocean model in the slave mode was not able to develop dynamics different from the driving coarse resolution model which provides the boundary conditions.


1999 ◽  
Vol 42 (2) ◽  
Author(s):  
E. Lodolo ◽  
F. Coren ◽  
C. Zanolla

About 40 000 km of marine magnetic and gradiometric data have been collected during eight geophysical surveys conducted since the Austral summer 1987/1988 in the circum-antarctic seas, by the research vessel OGS-Explora. For the most surveyed areas (Ross Sea, Southwestern Pacific Ocean, and Southern Scotia Sea), the analysis of the acquired data have contributed to clarify important aspects of their geological structure and tectonic evolution. The main scientific results, obtained combining other available geophysical data (multichannel seismic profiles and satellite-derived data), will be briefly illustrated.


2020 ◽  
Author(s):  
Sean Hillacre ◽  
Kevin Ansdell ◽  
Brian McEwan

Abstract Recent significant discoveries of uranium mineralization in the southwestern Athabasca basin, northern Saskatchewan, Canada, have been associated with a series of geophysical conductors along a NE- to SW-trending structural zone, termed the Patterson Lake corridor. The Arrow deposit (indicated mineral resource: 256.6 Mlb U3O8; grade 4.03% U3O8) is along this trend, hosted exclusively in basement orthogneisses of the Taltson domain, and is the largest undeveloped uranium deposit in the basin. This study is the first detailed analysis of a deposit along this corridor and examines the relationships between the ductile framework and brittle reactivation of structures, mineral paragenesis, and uranium mineralization. Paragenetic information from hundreds of drill core samples and thin sections was integrated with structural analysis utilizing over 18,000 measurements of various structural features. The structural system at Arrow is interpreted as a partitioned, strike-slip–dominated, brittle-ductile fault system of complex Riedel-style geometry. The system developed along subvertical, NE- to SW-trending dextral high-strain zones formed syn- to post-D3 deformation, which were the focus of extensive premineralization metasomatism (quartz flooding, sericitization, chloritization), within the limb domain of a regional-scale fold structure. These zones evolved through post-Athabasca dextral and sinistral reactivation events, creating brittle fault linkages and dilation zones, allowing for hydrothermal fluid migration and resulting uraninite precipitation and associated alteration (white mica, chlorite, kaolinite, hematite, quartz veins). This study of the structural context of Arrow is important as it emphasizes that protracted reactivation of deep-seated structures and their subsidiaries was a fundamental control on uranium mineralization in the southwestern Athabasca basin.


Sign in / Sign up

Export Citation Format

Share Document