scholarly journals Megaseismic section across the northeastern slope of the Arabian Plate, Iraq

GeoArabia ◽  
2006 ◽  
Vol 11 (4) ◽  
pp. 77-90 ◽  
Author(s):  
Sabah A.G Mohammed

ABSTRACT A composite seismic image (Megaseismic Line 7) was constructed across Iraq using 16 pre-existing seismic lines that were recorded between 1975 and 1983. The image is the first of 15 megaseismic lines that will eventually form a rectilinear grid that covers Iraq. It is oriented in a SW-NE direction, and extends approximately 500 kilometers from the Iraq-Saudi Arabia border to the Iraq-Iran border. The seismic lines were recorded using a 48-channel system with either a vibroseis or dynamite source. The maximum offset varies from 2,400 to 5,000 meters. The seismic data was reprocessed using a common datum of 300 meters above sea level. Data quality is good where the source was dynamite and the terrain consists of gravel and sand surfaces; it is poor where vibroseis was used or/and the outcrops were carbonates. The final stacked section and Hilbert attributes (reflection amplitude and instantaneous phase) were displayed at different scales to determine the best perspective for interpretation. A total of 14 reflections, corresponding to Miocene to Permian horizons, were identified using synthetic seismograms from five wells. The horizons generally dip towards the northeast, except at the location of the Tel Ghazal oil field where syndepositional growth is inferred. Various seismic stratigraphic geometries, such as sigmoidal features, onlap, toplap and downlap, were identified and used to define disconformities and angular unconformities. The oldest two horizons that could be picked are from the tops of the Triassic Kurra Chine and Permian Chia Zairi formations. Below the oldest Permian reflection, the middle Carboniferous “Hercynian unconformity” was tentatively picked. The Paleozoic pre-Permian succession is not adequately imaged in the seismic data, nor is the crystalline basement seen. The seismic interpretation was compared to the profiles of the Bouguer gravity anomaly and the total magnetic field, and good correlations were established. The regional line helped identify several previously unknown structural features including the Ma’aniya Depression in the Western Desert, and two anticlinal structures: the first being within that depression and the second directly to the southwest of Tel Ghazal oil field.

2019 ◽  
Vol 10 (2) ◽  
pp. 371-393
Author(s):  
Mohamed F. Abu-Hashish ◽  
Hamdalla A. Wanas ◽  
Emad Madian

Abstract This study aims to construct 3D geological model using the integration of seismic data with well log data for reservoir characterization and development of the hydrocarbon potentialities of the Upper Cretaceous reservoirs of GPT oil field. 2D seismic data were used to construct the input interpreted horizon grids and fault polygons. The horizon which cut across the wells was used to perform a comprehensive petrophysical analysis. Structural and property modeling was distributed within the constructed 3D grid using different algorithms. The workflow of the 3D geological model comprises mainly the structural and property modeling. The structural model includes fault framework, pillar girding, skeleton girding, horizon modeling and zonation and layering modeling processes. It shows system of different oriented major and minor faults trending in NE–SW direction. The property modeling process was performed to populate the reservoir facies and petrophysical properties (volume of shale (Vsh), fluid saturations (Sw and Sh), total and effective porosities (Φt and Φe), net to gross thickness and permeability) as extracted from the available petrophysical analysis of wells inside the structural model. The model represents a detailed zonation and layering configuration for the Khoman, Abu Roash and Bahariya formations. The 3D geological model helps in the field development and evaluates the hydrocarbon potentialities and optimizes production of the study area. It can be also used to predict reservoir shape and size, lateral continuity and degree of interconnectivity of the reservoir, as well as its internal heterogeneity.


GeoArabia ◽  
2012 ◽  
Vol 17 (3) ◽  
pp. 133-176
Author(s):  
Mohammed Y. Farooqui ◽  
Khamis Farhoud ◽  
Dia Mahmoud ◽  
Ahmed N. El-Barkooky

ABSTRACT The South Diyur exploration block of nearly 38,000 sq km is located in the Farafra Oasis region in the Western Desert of Egypt. It is a frontier exploration area, the nearest well being Ammonite-1, a dry hole drilled by Conoco in 1979 immediately outside the southwestern corner of the block. The South Diyur Block is located on the probable northeast extension of the Kufra Basin in southeast Libya. Although prolific reserves of oil and gas occur in Paleozoic basins in North Africa and throughout the Middle East, to date, the targets for petroleum exploration in the northern Western Desert have been in Jurassic and Cretaceous rocks. The regional structural surface features in the South Diyur Block are the NE-trending Bahariya and Farafra anticlines interpreted as a deeply eroded and inverted Late Cretaceous structure on the southern extension of the Syrian Arc system. The oldest exposed rocks are a Cretaceous sequence of sublittoral sediments (the Campanian Wadi Hennis Formation) in the core of the anticline. The interpretation of the subsurface is based on 1,175 line-km of reprocessed 1970s-vintage 2-D seismic. Four sequence boundaries have been identified from the seismic data. SB-1 correlates with the Jurassic/Cretaceous boundary in Ammonite-1. SB-2 is regionally correlated with the Late Devonian to Early Carboniferous Hercynian unconformity that overlies deeply eroded and truncated Paleozoic sequences and possibly marks the regionally extensive Late Paleozoic basin inversion. SB-3 near the base of the interpreted Silurian sequence coincides with the ‘hot shale’ petroleum source rock that is present throughout North Africa and the Middle East. SB-4 is interpreted as a major unconformity at the top of an Upper Proterozoic sedimentary section that was misinterpreted as the Precambrian acoustic basement in Ammonite-1. Five seismic sequences relate to the seismic boundaries. SS-1, from the surface to SB-1 is characterized by subparallel seismic stratification and is composed mainly of sandstone with shale interbeds in Ammonite-1. SS-2, bounded by SB-1 and SB-2, is distinguished by parallel to subparallel seismic stratification. In Ammonite-1, the sequence of interbedded sandstone and shale is fresh-water bearing and lacking in top seals, thus reducing its prospectivity. The underlying SS-3 (SB-2 to SB-3) directly underlies the Hercynian unconformity and is characterized by semi-transparent seismic facies that may correspond to a thick Silurian shale sequence. SS-4 (SB-3 to SB-4) of probable Cambrian–Ordovician age has parallel seismic stratification. Deep channels are interpreted as evidence of a Late Ordovician–Early Silurian glacial phase that is present throughout North Africa and the Middle East. SS-5 (below SB-4) is marked by partial subparallel seismic stratification and block faulting. It probably belongs to the Late Proterozoic (Pan-African) phase of block faulting and pull-apart basins. Similar seismic geometries and facies occur in the Kufra Basin in southeast Libya and in many parts of the Arabian Plate, including the prolific petroleum systems of Oman. Exploration plays in the South Diyur Block are a combination of Paleozoic structural and stratigraphic traps associated with prospective fairways, and possible stratigraphic traps in the Late Ordovician–Early Silurian glacial channels. In addition, the interpreted Late Proterozoic sequences (SS-5) warrant further evaluation. In order to identify future exploration plays and drill targets, additional 2-D seismic (4,490 line-km), aeromagnetic and airborne gravity surveys will be integrated with the present seismic data and drilling results from Ammonite-1. This will allow a proper assessment of the magnetic basement, basin configuration and prospective fairways.


2021 ◽  
pp. 3942-3951
Author(s):  
Ali K. Jaheed ◽  
Hussein H. Karim

The Amarah Oil field structure was studied and interpreted by using 2-D seismic data obtained from the Oil  Exploration company. The study is concerned with Maysan Group Formation (Kirkuk Group) which is located in southeastern Iraq and belongs to the Tertiary Age. Two reflectors were detected based on synthetic seismograms and well logs (top and bottom Missan Group). Structural maps were derived from seismic reflection interpretations to obtain the location and direction of the sedimentary basin. Two-way time and depth maps were conducted depending on the structural interpretation of the picked reflectors to show several structural features. These included three types of closures, namely two anticlines extended in the directions of S-SW and NE, one nose structure (anticline) in the middle of the study area,  and structural faults in the northeastern part of the area, which is consistent with the general fault pattern. The seismic interpretation showed the presence of some stratigraphic features. Stratigraphic trap at the eastern part of the field, along with other phenomena, such as flatspot (mound), lenses, onlap, and toplap, were detected as indications of potential hydrocarbon accumulation in the region.


Geophysics ◽  
2001 ◽  
Vol 66 (4) ◽  
pp. 1190-1194 ◽  
Author(s):  
J. S. Gulati ◽  
R. R. Stewart ◽  
B. H. Hoffe

We acquired seismic data using a vertical hydrophone cable in a shallow, fluid‐filled borehole over the Blackfoot oil field in Alberta, Canada. The hydrophone data were recorded simultaneously with a surface seismic survey using dynamite sources. In addition, buried three‐component (3‐C) geophone data were acquired near the vertical cable. We observe that events on the hydrophone records are in phase with corresponding geophone data. Tube waves, which can be a problem on hydrophone data, are suppressed using a predictive deconvolution operator. Imaging, using the hydrophone data, results in a section that correlates well with a surface seismic image from vertical‐component geophone data. An anomaly, interpreted to be associated with the sand reservoir in the area, is evident on the hydrophone image (as well as on the surface seismic sections). The vertical hydrophone cable promises excellent imaging potential for land applications.


Author(s):  
Nina Skaarup ◽  
James A. Chalmers

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Skaarup, N., & Chalmers, J. A. (1998). A possible new hydrocarbon play, offshore central West Greenland. Geology of Greenland Survey Bulletin, 180, 28-30. https://doi.org/10.34194/ggub.v180.5082 _______________ The discovery of extensive seeps of crude oil onshore central West Greenland (Christiansen et al. 1992, 1994, 1995, 1996, 1997, 1998, this volume; Christiansen 1993) means that the central West Greenland area is now prospective for hydrocarbons in its own right. Analysis of the oils (Bojesen-Koefoed et al. in press) shows that their source rocks are probably nearby and, because the oils are found within the Lower Tertiary basalts, the source rocks must be below the basalts. It is therefore possible that in the offshore area oil could have migrated through the basalts and be trapped in overlying sediments. In the offshore area to the west of Disko and Nuussuaq (Fig. 1), Whittaker (1995, 1996) interpreted a few multichannel seismic lines acquired in 1990, together with some seismic data acquired by industry in the 1970s. He described a number of large rotated fault-blocks containing structural closures at top basalt level that could indicate leads capable of trapping hydrocarbons. In order to investigate Whittaker’s (1995, 1996) interpretation, in 1995 the Geological Survey of Greenland acquired 1960 km new multichannel seismic data (Fig. 1) using funds provided by the Government of Greenland, Minerals Office (now Bureau of Minerals and Petroleum) and the Danish State through the Mineral Resources Administration for Greenland. The data were acquired using the Danish Naval vessel Thetis which had been adapted to accommodate seismic equipment. The data acquired in 1995 have been integrated with the older data and an interpretation has been carried out of the structure of the top basalt reflection. This work shows a fault pattern in general agreement with that of Whittaker (1995, 1996), although there are differences in detail. In particular the largest structural closure reported by Whittaker (1995) has not been confirmed. Furthermore, one of Whittaker’s (1995) smaller leads seems to be larger than he had interpreted and may be associated with a DHI (direct hydrocarbon indicator) in the form of a ‘bright spot’.


2012 ◽  
Vol 31 (4) ◽  
pp. 387-391 ◽  
Author(s):  
Paul F. Anderson ◽  
Paul Bingaman ◽  
Kyle Graves ◽  
Fred Fernandes ◽  
Fiona O'Sullivan ◽  
...  
Keyword(s):  

GeoArabia ◽  
2009 ◽  
Vol 14 (3) ◽  
pp. 199-228 ◽  
Author(s):  
Mohammad Faqira ◽  
Martin Rademakers ◽  
AbdulKader M. Afifi

ABSTRACT During the past decade, considerable improvements in the seismic imaging of the deeper Paleozoic section, along with data from new well penetrations, have significantly improved our understanding of the mid-Carboniferous deformational event. Because it occurred at the same time as the Hercynian Orogeny in Europe, North Africa and North America it has been commonly referred to by the same name in the Middle East. This was the main tectonic event during the late Paleozoic, which initiated or reactivated many of the N-trending block uplifts that underlie the major hydrocarbon accumulations in eastern Arabia. The nature of the Hercynian deformation away from these structural features was poorly understood due to inadequate seismic imaging and insufficient well control, along with the tectonic overprint of subsequent deformation events. Three Hercynian NE-trending arches are recognized in the Arabian Plate (1) the Levant Arch, which extended from Egypt to Turkey along the coast of the Mediterranean Sea, (2) the Al-Batin Arch, which extended from the Arabian Shield through Kuwait to Iran, and (3) the Oman-Hadhramaut Arch, which extended along the southeast coast of Oman and Yemen. These arches were initiated during the mid-Carboniferous Hercynian Orogeny, and persisted until they were covered unconformably by the Khuff Formation during the Late Permian. Two Hercynian basins separate these arches: the Nafud-Ma’aniya Basin in the north and Faydah-Jafurah Basin in the south. The pre-Hercynian Paleozoic section was extensively eroded over the arches, resulting in a major angular unconformity, but generally preserved within the basins. Our interpretation suggests that most of the Arabian Shield, except the western highlands along the Red Sea, is the exhumed part of the Al-Batin Arch. The Hercynian structural fabric of regional arches and basins continue in northern Africa, and in general appear to be oriented orthogonal to the old margin of the Gondwana continent. The Hercynian structure of arches and basins was partly obliterated by subsequent Mesozoic and Cenozoic tectonic events. In eastern Saudi Arabia, Qatar, and Kuwait, regional extension during the Triassic formed N-trending horsts and graben that cut across the NE-trending Hercynian mega-structures, which locally inverted them. Subsequent reactivation during the Cretaceous and Neogene resulted in additional growth of the N-trending structures. The Hercynian Arches had major impact on the Paleozoic hydrocarbon accumulations. The Silurian source rocks are generally preserved in the basins and eroded over the arches, which generally confined Silurian-sourced hydrocarbons either within the basins or along their flanks. Furthermore, the relict Hercynian paleo-topography generally confined the post-Hercynian continental clastics of the Unayzah Formation and equivalents to the Hercynian basins. These clastics contain the main Paleozoic oil and gas reservoirs, particularly along the basin margins where they overlie the sub-crop of the Silurian section with angular unconformity, thus juxtaposing reservoir and source rock.


2021 ◽  
Author(s):  
Simon Blondel ◽  
Angelo Camerlenghi ◽  
Anna Del Ben ◽  
Massimo Bellucci

<p>This study presents the interpretation of reprocessed seismic data covering the southwestern Balearic promontory and the central Algerian basin. The new depth processing of 2D seismic lines dataset allows for the first time a good resolution on salt structures in the deep basin. Most of the salt structures result from active diapirism. In the deep basin, sedimentary loads and regional shortening are proposed to be the dominant driving forces, showing an overall contractional salt system. The north Algerian margin tectonic reactivation could have provoked a regional shortening of the salt structures and overburden. Identified unconformities suggest that this process probably started shortly after salt deposition and is still active nowadays. It is expressed by salt sheets, pinched diapirs and a décollement level. The African convergence and the narrowness of the western Algerian basin could be the explanation of an overall greater salt deformation intensity compared to the eastern Algerian basin. This demonstrates how in tectonic and sedimentary components appear to be dominant in salt deformation in the central Algerian basin compared to gravitational gliding, only localized in the proximal parts of the margin.</p>


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. N29-N40
Author(s):  
Modeste Irakarama ◽  
Paul Cupillard ◽  
Guillaume Caumon ◽  
Paul Sava ◽  
Jonathan Edwards

Structural interpretation of seismic images can be highly subjective, especially in complex geologic settings. A single seismic image will often support multiple geologically valid interpretations. However, it is usually difficult to determine which of those interpretations are more likely than others. We have referred to this problem as structural model appraisal. We have developed the use of misfit functions to rank and appraise multiple interpretations of a given seismic image. Given a set of possible interpretations, we compute synthetic data for each structural interpretation, and then we compare these synthetic data against observed seismic data; this allows us to assign a data-misfit value to each structural interpretation. Our aim is to find data-misfit functions that enable a ranking of interpretations. To do so, we formalize the problem of appraising structural interpretations using seismic data and we derive a set of conditions to be satisfied by the data-misfit function for a successful appraisal. We investigate vertical seismic profiling (VSP) and surface seismic configurations. An application of the proposed method to a realistic synthetic model shows promising results for appraising structural interpretations using VSP data, provided that the target region is well-illuminated. However, we find appraising structural interpretations using surface seismic data to be more challenging, mainly due to the difficulty of computing phase-shift data misfits.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. WC69-WC79 ◽  
Author(s):  
Mahdieh Dehghannejad ◽  
Alireza Malehmir ◽  
Christopher Juhlin ◽  
Pietari Skyttä

The Kristineberg mining area in the western part of the Skellefte ore district is the largest base metal producer in northern Sweden and currently the subject of extensive geophysical and geologic studies aimed at constructing 3D geologic models. Seismic reflection data form the backbone of the geologic modeling in the study area. A geologic cross section close to the Kristineberg mine was used to generate synthetic seismic data using acoustic and elastic finite-difference algorithms to provide further insight about the nature of reflections and processing challenges when attempting to image the steeply dipping structures within the study area. Synthetic data suggest processing artifacts manifested themselves in the final 2D images as steeply dipping events that could be confused with reflections. Fewer artifacts are observed when the data are processed using prestack time migration. Prestack time migration also was performed on high-resolution seismic data recently collected near the Kristineberg mine and helped to image a high-amplitude, gently dipping reflection occurring stratigraphically above the extension of the deepest Kristineberg deposit. Swath 3D processing was applied to two crossing seismic lines, west of the Kristineberg mine, to provide information on the 3D geometry of an apparently flat-lying reflection observed in both of the profiles. The processing indicated that the reflection dips about 30° to the southwest and is generated at the contact between metasedimentary and metavolcanic rocks, the upper part of the latter unit being the most typical stratigraphic level for the massive sulfide deposits in the Skellefte district.


Sign in / Sign up

Export Citation Format

Share Document