Sur la presence de dolomite dans les 'terres noires' de l'anticlinorium de Laragne (Hautes-Alpes); interpretation paleo-oceanographique

1965 ◽  
Vol S7-VII (5) ◽  
pp. 769-772
Author(s):  
Philippe Artru

Abstract Middle Jurassic (Bathonian) and upper Jurassic (Callovian-lower Argovian) dark-colored shales and marls of Hautes-Alpes, France, locally known as the 'terres noires,' contain abundant microcrystalline dolomite in the lower (Bathonian) part. Mixed detrital sediments and carbonates in the lower part contrast with essentially terrigenous strata in the upper (Callovian-Oxfordian) part. The Bathonian depositional basin was isolated by sills and probably contained magnesium-rich waters of low pH; at the beginning of the upper Jurassic the basin became more open and dolomite formation ceased.

1963 ◽  
Vol S7-V (1) ◽  
pp. 41-46 ◽  
Author(s):  
Lucienne Rousselle

Abstract A critical restudy of the brachiopod Flabellothyris oranensis from Si Slimane ben Moussa in northwestern Algeria, and various places in the eastern High Atlas and Middle Atlas mountains of Morocco, with respect to its vertical stratigraphic range and its relationships to associated fauna indicates Dogger (middle Jurassic) age--perhaps upper or terminal Bajocian, or lower Bathonian. The species is redescribed in accordance with the material at hand. Attention is called to the similarity between F. oranensis and F. dichotoma of the Bathonian (upper middle Jurassic) and Callovian (lowermost upper Jurassic) of India and Madagascar.


Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


2013 ◽  
Vol 87 (1) ◽  
pp. 105-122 ◽  
Author(s):  
Thomas Saucede ◽  
Alain Bonnot ◽  
Didier Marchand ◽  
Philippe Courville

The discovery of a new species,Cyclolampas altusnew species in the upper Callovian of Burgundy (France) leads to the systematic revision of the rare echinoid genusCyclolampasPomel, 1883. Two morphometric approaches are used jointly to describe and quantify variations in test shape: the analysis of linear measurements and the Elliptic Fourier shape analysis. Both analyses yield congruent results that highlight the amplitude of within-species variations and quantify the part due to allometry. Along with the description ofC. altus, the systematic position of species formerly assigned to the generaPygorhytisPomel, 1883 andCyclolampasis amended. Previously attributed to the genusPygorhytis,Cyclolampas castanea(Desor, 1858) is reassigned to the genusCyclolampason the base of new observations. Conversely, the examination of the Bajocian speciesPygorhytis kiliani(Lambert, 1909) andPygorhytis gillieroniDesor in Desor and de Loriol, 1872, which were previously assigned toCyclolampasnow supports their taxonomic reassignment to the genusPygorhytis. Finally, the two speciesCyclolampas verneuili(Cotteau, 1870) andCyclolampas cotteauiMintz, 1966 (nomen nudum) are considered junior synonyms of the genus type speciesCyclolampas voltzii(Agassiz, 1839). The questioned origin date of the genus, estimated either to the Bajocian or to the Oxfordian, is now clearly established to be upper Callovian. These new results fit well with the overall scheme of atelostomate echinoid evolution and migration to deep-sea environments during the Middle and Upper Jurassic.


2019 ◽  
pp. 36-61
Author(s):  
S. V. Rud’ko ◽  
N. B. Kuznetsov ◽  
E. A. Belousova ◽  
T. V. Romanyuk

The U–Pb dating and Hf isotope systematics of detrital zircons from a sandstone interbed in the section of the upper conglomerate sequence of the Mt. South Demerdzhi were carried out. The dominant populations of detrital zircons in the studied sample characterize episodes of magmatic activity within the source of the Upper Jurassic conglomerates. Magmatism was manifested in the Vendian-Cambrian, Carbon-Triassic and Late Jurassic. The åHf values of detrital zircons of these ages indicate the insignificant role of the ancient (Archean–Early Proterozoic) continental crust in the protolith of magmatic chambers. The similarity of the detrital zircons age distribution from the Middle Jurassic and Upper Jurassic conglomerate strata suggests that they are molasses of the Cimmerian orogen. The absence of products of Middle Jurassic magmatism in molasses of the Cimmerian orogen, which we fixed, limits position of the Cimmerian orogen in the southern part of the Scythian plate. It is shown that the primary source of the Precambrian detrital zircons were mobilized within the Cimmerian orogen the crustal fragments of the Peri-Gondwanan origin, rather than the basement complexes of the East European Platform, similar to the complexes of the Ukrainian shield. The reconstruction of the main stages of the accumulation of the coarse-grained strata of the Mountaineous Crimea in the context of the tectonic evolution of the southern margin of Laurasia during the Mesozoic is presented.


2020 ◽  
Vol 298 (2) ◽  
pp. 137-146
Author(s):  
Günter Schweigert

The Late Jurassic nautiloid Somalinautilus antiquus (Dacqué, 1910), previously only known by the holotype from Lower Kimmeridgian strata of Ethiopia, is reported from the Lower Kimmeridgian (Platynota Zone) of Southern Germany. This unexpected record largely expands the known geographic distribution of this species. Another species of Somalinautilus, S. clavifer Tintant , 1994, is recorded for the first time from the Middle Jurassic (Lower Bathonian, Zigzag Zone) of Southern Germany. A short stratigraphic and palaeogeographic review of Somalinautilus occurrences is provided. Faunal migrations of nautiloids over large distances were probably triggered by sea- level highstands and/or palaeocurrents.


2020 ◽  
Author(s):  
Kseniya Mikhailova ◽  
Victoria Ershova ◽  
Mikhail Rogov ◽  
Boris Pokrovsky ◽  
Oleg Vereshchagin

<p>Glendonites often used as paleoclimate indicator of cold near-bottom temperature, as these are calcite pseudomorphs of ikaite, a metastable calcium carbonate hexahydrate, precipitates mostly under low temperature (mainly from 0-4<sup>o</sup>C) and may be stabilized by high phosphate concentrations that occurs due to anaerobic oxidation of methane and/or organic matter; dissolved organic carbon, sulfates and amino acid may contribute ikaite formation as well.  Therefore, glendonites-bearing host rocks frequently include glacial deposits that make them useful as a paleoclimate indicator of near-freezing temperature.</p><p>Our study is based on material collected from five wells drilled in eastern Barents Sea: Severo-Murmanskaya, Ledovaya – 1,2; Ludlovskaya – 1,2. The studied glendonites, mainly represented by relatively small rhombohedral pseudomorphs (0,5-2 cm) and rarely by stellate aggregates, collected from Middle Jurassic to Lower Cretaceous shallow marine clastic deposits. They scattered distributed throughout succession. Totally 18 samples of glendonites were studied. The age of host-bearing rocks were defined by fossils: bivalves or ammonites, microfossils or dinoflagellate. Bajocian-Bathonian glendonites were collected from Ledovaya – 1 and Ludlovskaya – 1 and 2 wells; in addition to these occurrences Middle Jurassic glendonites are known also in boreholes drilled at Shtockmanovskoe field. Numerous ‘jarrowite-like’ glendonites of the Middle Volgian (~ latest early Tithonian) age were sampled from Severo-Murmanskaya well. Unique Late Barremian glendonites were found in Ledovaya – 2 well.</p><p>δ<sup>18</sup>O values of Middle Jurassic glendonite concretions range from – 5.4 to –1.7 ‰ Vienna Pee Dee Belemnite (VPDB); for Upper Jurassic – Lower Cretaceous δ<sup>18</sup>O values range from – 4.3 to –1.6 ‰ VPDB; for Lower Cretaceous - δ<sup>18</sup>O values range from – 4.5 to –3.4 ‰ VPDB. Carbon isotope composition for Middle Jurassic glendonite concretions δ<sup>13</sup>C values range from – 33.3 to –22.6 ‰ VPDB; for Upper Jurassic – Lower Cretaceous δ<sup>13</sup>C values range from – 25.1 to –18.4 ‰ VPDB; for Lower Cretaceous - δ<sup>13</sup>C values range from – 30.1 to –25.6 ‰ VPDB.</p><p>Based on δ<sup>18</sup>O data we supposed that seawater had a strong influence on ikaite-derived calcite precipitation. Received data coincide with δ<sup>18</sup>O values reported from other Mesozoic glendonites and Quaternary glendonites formed in cold environments. Values of δ<sup>13</sup>C of glendonites are close to bacterial sulfate reduction and/or anaerobic oxidation of methane or organic matter. Glendonites consist of carbonates forming a number of phases which different in phosphorus and magnesium content. Mg-bearing calcium carbonate and dolomite both include framboidal pyrite, which can indicate (1) lack of strong rock transformations activity and (2) presence of sulfate-reduction bacteria in sediments.</p><p>To conclude, Mesozoic climate was generally warm and studied concretions indicate cold climate excursion in Middle Jurassic, Upper Jurassic-Early Cretaceous and Early Cretaceous.</p><p> </p><p>The study was supported by RFBR, project number 20-35-70012.</p>


2012 ◽  
Vol 616-618 ◽  
pp. 19-25 ◽  
Author(s):  
Cheng Zhang ◽  
Guang Yang ◽  
Yong Shu Zhang

Based on the analysis and testing data of rocks, the basic geologic characteristics of Suganhu depression is discussed. It is concluded that the 200m thickness dark mudstone of inshore shallow lake face in the middle–lower Jurassic stratum is the only source rock of this region. It has the characteristics of high abundance of organic matter and in high mature stage. And the type of organic matter is Ⅱ2.The reservoir properties is controlled by the influences of both the sedimentation and the diagenesis and belong to the low porosity and low permeability ones. The mudstone of Upper Jurassic is the local cap, the ones of braided river face and braided river delta face which existed in the up-middle of the middle Jurassic can be qualified as sealing bed between the sand bodies. Paleocene–eocene mudstone is the regional cap rock. The ability of upper Jurassic sealing bed is good because of the low porosity and permeability and high break pressure. The regional cap rock has the characteristics of big thickness and large area. Both the local and regional cap rock had been able to seal the petroleum and gas before the time of hydrocarbon accumulation of middle Jurassic. In general, Mesozoic formed reservoir–cap combination with the features of lower–generation and upper–reservoir, upper–cap.


2010 ◽  
Vol 84 (1) ◽  
pp. 149-155 ◽  
Author(s):  
Marie-Céline Buchy

From the Middle Jurassic on, the Tethys basin opened westward; the existence of a Carribean corridor linking the European and Pacific realms now appears well supported by comparison of marine reptile assemblages (e.g., Gasparini and Fernández, 1997, 2005; Gasparini et al., 2000; Fernández and Iturralde-Vinent, 2000; Gasparini and Iturralde-Vinent, 2001, 2006; Gasparini et al., 2002). Marine transgression in Mexico began during the Callovian, as evidenced by the evaporites of the Minas Viejas Fm. However, microfossils and invertebrate assemblages indicate that the Mexican Gulf remained isolated from both the European Archipelago and the Pacific, at least temporarily, until the middle Berriasian; the Florida uplift and southward movement of Yucatan were proposed as possibly forming a barrier (Salvador et al., 1993; Adatte et al., 1994, 1996; Goldhammer, 1999; Goldhammer and Johnston, 2001; Gasparini and Iturralde-Vinent, 2006). After almost a decade of field work and examination of collections, the Late Jurassic marine reptile assemblage of north-east Mexico confirms the conclusions drawn from microfossils and invertebrates. Poorly diagnostic ichthyosaur remains, with various thalattosuchians, numerically dominate the assemblage. Sauropterygians are rare, mainly represented by large pliosaurids of unclear affinities, a few vertebrae attributed to elasmosaurids, and a unique cryptoclidid. Turtles are yet to be reported (Frey et al., 2002; Buchy et al., 2003, 2005b, 2006a–d; Buchy, 2007, 2008a, b; material currently under study).


1991 ◽  
Vol 14 (1) ◽  
pp. 95-102 ◽  
Author(s):  
A. Baumann ◽  
B. O'Cathain

AbstractThe Dunlin Oilfield is located in the East Shetland Basin, 160 km northeast of the Shetland Islands. It lies in UK Blocks 211/23a and 211/24a in about 500 ft of water. The field was discovered in June 1973 by well 211/23-1. The oil accumulation is trapped, in a north-south oriented, tilted fault block at the western margin of the Viking Graben, at a depth of about 8500 ft TVSS. The reservoir is contained in the formations of the Middle Jurassic Brent Group. In the Dunlin area they form a 450 ft thick sequence of sands and intercalated minor shales, which has been deposited by a shore face and delta system prograding northwards across the Viking Graben. The seal is formed by the shales of the Middle/Upper Jurassic Heather Formation. Reservoir properties of the Brent sands are fair to good with porosities of up to 30% and average permeabilities in the range from 10 to 4000 md. Development of the field is carried out from a single platform, from which production started in 1978. To date 40 development wells have been drilled and the total cumulative production amounts to 282 MMBBL of an ultimate recovery of 363 MMBBL.


Sign in / Sign up

Export Citation Format

Share Document