The Theory of Naphthidogenesis: A Quantitative Model of the Catagenetic Evolution of Aquatic Organic Matter

2021 ◽  
Vol 62 (08) ◽  
pp. 840-858
Author(s):  
A.E. Kontorovich ◽  
L.M. Burshtein ◽  
V.R. Livshits

Abstract —This study discusses the evolution of the composition of dispersed organic matter from the Bazhenov Formation (West Siberian petroleum basin) and the products of its catagenetic transformation on the basis of the balance and kinetic approaches to modeling of the catagenetic transformation of organic matter and its individual components, primarily kerogen. The results show that the variations in the elemental composition of kerogen and the extent of generation of both hydrocarbons and nonhydrocarbons can be quantitatively described using a simplified kinetic model. Preliminary estimates of the model parameters are given for the averaged Bazhenov-type kerogen. It is shown that numerical modeling of the catagenetic transformation of dispersed organic matter confirms the validity of the recognition of the main phase (zone) of oil generation and the main phase (zone) of gas generation.

1994 ◽  
Vol 34 (1) ◽  
pp. 279 ◽  
Author(s):  
Dennis Taylor ◽  
Aleksai E. Kontorovich ◽  
Andrei I. Larichev ◽  
Miryam Glikson

Organic rich shale units ranging up to 350 m in thickness with total organic carbon (TOC) values generally between one and ten per cent are present at several stratigraphic levels in the upper part of the Carpentarian Roper Group. Considerable variation in depositional environment is suggested by large differences in carbon:sulphur ratios and trace metal contents at different stratigraphic levels, but all of the preserved organic matter appears to be algal-sourced and hydrogen-rich. Conventional Rock-Eval pyrolysis indicates that a type I-II kerogen is present throughout.The elemental chemistry of this kerogen, shows a unique chemical evolution pathway on the ternary C:H:ONS diagram which differs from standard pathways followed by younger kerogens, suggesting that the maturation histories of Proterozoic basins may differ significantly from those of younger oil and gas producing basins. Extractable organic matter (EOM) from Roper Group source rocks shows a chemical evolution from polar rich to saturate rich with increasing maturity. Alginite reflectance increases in stepwise fashion through the zone of oil and gas generation, and then increases rapidly at higher levels of maturation. The increase in alginite reflectance with depth or proximity to sill contacts is lognormal.The area explored by Pacific Oil and Gas includes a northern area where the Velkerri Formation is within the zone of peak oil generation and the Kyalla Member is immature, and a southern area, the Beetaloo sub-basin, where the zone of peak oil generation is within the Kyalla Member. Most oil generation within the basin followed significant folding and faulting of the Roper Group.


Author(s):  
T. B. Mikerina ◽  
N. P. Fadeeva

Use of infrared spectrometry method for examination of bituminous components of dispersed organic matter in Mesozoic and Cenozoic deposits of the Azov-Kuban petroleum basin gave very important information about conditions of formation of source rocks containing organic matter and the degree of its diagenetic or catagenetic transformation level. Character of infrared spectrums represented by 15 genetic types of chloroform bitumen allows to subdivide the zones with the source beds absence, zones of oil generation and zones where this processes have come to the end.


2021 ◽  
Vol 54 (2E) ◽  
pp. 59-85
Author(s):  
Dler Baban

Thirty rock samples were selected from the well Tq-1 that penetrated the Jurassic beds in the Taq Taq Oilfield to be studied the source rock potentiality of the Sargelu Formation. The formation is characterized by three types of microfacies, namely, foraminiferal packstone, grainstone microfacies, fossiliferous packstone microfacies, and foraminiferal wackestone which were deposited in an environment extending from middle to outer carbonate ramp. An average of 3.03 wt.% of total organic carbon was obtained from a Rock Eval pyrolysis analysis carried out on 24 selected rock samples. The petrographic analysis for such organic matters revealed that they are of kerogen types III and IV and they are currently in a post-mature state. Pyrolysis parameters showed that limited generation potential was remained for these sources to expel generated hydrocarbons. The palynological study showed that Amorphous Organic Matter forms the highest percentage of organic matter components with more than 70%, followed by phytoclasts with 10 – 25 % and palynomorphs of less than 10%. The organic matters within the Sargelu Formation are deposited at the distal part of the basin under suboxic to anoxic condition. The color of the organic matter components, examined under transmitted light, showed Thermal Alteration Index values between 3+ and 4-. Such values may indicate that these organic matters are thermally at the end of the liquid oil generation zone and beginning of condensate-wet gas generation zone. The thermal maturity of the Sargelu Formation depending on the calculated VRo% revealed that the formation in the studied oilfield is currently at the peak of the oil generation zone. The Sargelu Formation in the studied field is considered as an effective source rock, as it has already generated and expelled hydrocarbons.


1973 ◽  
Vol 13 (1) ◽  
pp. 73 ◽  
Author(s):  
M. Shibaoka ◽  
A. J. R. Bennett ◽  
K. W. Gould

It is important that petroleum exploration geologists know the critical depth limits where oil is generated from original organic matter in sediments and where the oil changes to natural gas. Organic matter is very sensitive to temperature. The maximum temperature experienced is related to its depth of burial.CSIRO has used the composition and physical properties of various types of organic matter in shaly rocks as indicators for the degree of diagenesis caused by this heat alteration. The reflectance of vitrinite in associated coals is used as the primary standard, and carbon content of such coals as the secondary parameter to distinguish various stages of oil and gas generation. Depth-reflectance curves are useful 1., for estimating palaeogeothermal gradients, 2., for determining the degree of diagenesis at a particular depth and also 3., for estimating the approximate thickness of sediments subsequently lost after deposition.The petroleum potential of some Australian sedimentary basins is reviewed in the light of this knowledge. In the Northwest Shelf area and in the Capricorn and Otway Basins, the oil generation zone is deeper than in the Cooper, Galilee and Surat Basins. In the Bowen and Sydney Basins and several other small basins along the eastern coast of Australia, this zone is very shallow, and in some areas the oil generation zone has been completely lost by erosion. The areas most promising for oil fields are those where little erosion of sediments has taken place subsequent to deposition and diagenesis, provided that all other geologic factors for hydrocarbon accumulation are present.


2015 ◽  
Vol 8 (10) ◽  
pp. 3441-3470 ◽  
Author(s):  
J. A. Bradley ◽  
A. M. Anesio ◽  
J. S. Singarayer ◽  
M. R. Heath ◽  
S. Arndt

Abstract. SHIMMER (Soil biogeocHemIcal Model for Microbial Ecosystem Response) is a new numerical modelling framework designed to simulate microbial dynamics and biogeochemical cycling during initial ecosystem development in glacier forefield soils. However, it is also transferable to other extreme ecosystem types (such as desert soils or the surface of glaciers). The rationale for model development arises from decades of empirical observations in glacier forefields, and enables a quantitative and process focussed approach. Here, we provide a detailed description of SHIMMER, test its performance in two case study forefields: the Damma Glacier (Switzerland) and the Athabasca Glacier (Canada) and analyse sensitivity to identify the most sensitive and unconstrained model parameters. Results show that the accumulation of microbial biomass is highly dependent on variation in microbial growth and death rate constants, Q10 values, the active fraction of microbial biomass and the reactivity of organic matter. The model correctly predicts the rapid accumulation of microbial biomass observed during the initial stages of succession in the forefields of both the case study systems. Primary production is responsible for the initial build-up of labile substrate that subsequently supports heterotrophic growth. However, allochthonous contributions of organic matter, and nitrogen fixation, are important in sustaining this productivity. The development and application of SHIMMER also highlights aspects of these systems that require further empirical research: quantifying nutrient budgets and biogeochemical rates, exploring seasonality and microbial growth and cell death. This will lead to increased understanding of how glacier forefields contribute to global biogeochemical cycling and climate under future ice retreat.


Sign in / Sign up

Export Citation Format

Share Document