scholarly journals Source Rocks’ Potentiality of the Sargelu Formation (Middle Jurassic) in the Taq Taq Oilfield, Kurdistan Region, Iraq

2021 ◽  
Vol 54 (2E) ◽  
pp. 59-85
Author(s):  
Dler Baban

Thirty rock samples were selected from the well Tq-1 that penetrated the Jurassic beds in the Taq Taq Oilfield to be studied the source rock potentiality of the Sargelu Formation. The formation is characterized by three types of microfacies, namely, foraminiferal packstone, grainstone microfacies, fossiliferous packstone microfacies, and foraminiferal wackestone which were deposited in an environment extending from middle to outer carbonate ramp. An average of 3.03 wt.% of total organic carbon was obtained from a Rock Eval pyrolysis analysis carried out on 24 selected rock samples. The petrographic analysis for such organic matters revealed that they are of kerogen types III and IV and they are currently in a post-mature state. Pyrolysis parameters showed that limited generation potential was remained for these sources to expel generated hydrocarbons. The palynological study showed that Amorphous Organic Matter forms the highest percentage of organic matter components with more than 70%, followed by phytoclasts with 10 – 25 % and palynomorphs of less than 10%. The organic matters within the Sargelu Formation are deposited at the distal part of the basin under suboxic to anoxic condition. The color of the organic matter components, examined under transmitted light, showed Thermal Alteration Index values between 3+ and 4-. Such values may indicate that these organic matters are thermally at the end of the liquid oil generation zone and beginning of condensate-wet gas generation zone. The thermal maturity of the Sargelu Formation depending on the calculated VRo% revealed that the formation in the studied oilfield is currently at the peak of the oil generation zone. The Sargelu Formation in the studied field is considered as an effective source rock, as it has already generated and expelled hydrocarbons.

1994 ◽  
Vol 34 (1) ◽  
pp. 279 ◽  
Author(s):  
Dennis Taylor ◽  
Aleksai E. Kontorovich ◽  
Andrei I. Larichev ◽  
Miryam Glikson

Organic rich shale units ranging up to 350 m in thickness with total organic carbon (TOC) values generally between one and ten per cent are present at several stratigraphic levels in the upper part of the Carpentarian Roper Group. Considerable variation in depositional environment is suggested by large differences in carbon:sulphur ratios and trace metal contents at different stratigraphic levels, but all of the preserved organic matter appears to be algal-sourced and hydrogen-rich. Conventional Rock-Eval pyrolysis indicates that a type I-II kerogen is present throughout.The elemental chemistry of this kerogen, shows a unique chemical evolution pathway on the ternary C:H:ONS diagram which differs from standard pathways followed by younger kerogens, suggesting that the maturation histories of Proterozoic basins may differ significantly from those of younger oil and gas producing basins. Extractable organic matter (EOM) from Roper Group source rocks shows a chemical evolution from polar rich to saturate rich with increasing maturity. Alginite reflectance increases in stepwise fashion through the zone of oil and gas generation, and then increases rapidly at higher levels of maturation. The increase in alginite reflectance with depth or proximity to sill contacts is lognormal.The area explored by Pacific Oil and Gas includes a northern area where the Velkerri Formation is within the zone of peak oil generation and the Kyalla Member is immature, and a southern area, the Beetaloo sub-basin, where the zone of peak oil generation is within the Kyalla Member. Most oil generation within the basin followed significant folding and faulting of the Roper Group.


Author(s):  
David M. Katithi ◽  
David O. Opar

ABSTRACT The work reports an in-depth review of bulk and molecular geochemical data to determine the organic richness, kerogen type and thermal maturity of the Lokhone and the stratigraphically deeper Loperot shales of the Lokichar basin encountered in the Loperot-1 well. Oil-source rock correlation was also done to determine the source rocks’ likelihood as the source of oil samples obtained from the well. A combination of literature and geochemical data analyses show that both shales have good to excellent potential in terms of organic and hydrogen richness to act as conventional petroleum source rocks. The Lokhone shales have TOC values of 1.2% to 17.0% (average 5.16%) and are predominantly type I/II organic matter with HI values in the range of 116.3 – 897.2 mg/g TOC. The Lokhone source rocks were deposited in a lacustrine depositional environment in episodically oxic-dysoxic bottom waters with periodic anoxic conditions and have Tmax values in addition to biomarker signatures typical of organic matter in the mid-mature to mature stage with respect to hydrocarbon generation and immature for gas generation with Ro values of 0.51 – 0.64%. The Loperot shales were shown to be possibly highly mature type II/III source rocks with TOC values of 0.98% – 3.18% (average 2.4%), HI of 87 – 115 mg/g TOC and Ro of 1.16 – 1.33%. The Lokhone shale correlate well with the Loperot-1 well oils and hence is proposed as the principal source rock for the oils in the Lokichar basin. Although both source rocks have good organic richness to act as shale gas plays, they are insufficiently mature to act as shale gas targets but this does not preclude their potential deeper in the basin where sufficient gas window maturities might have been attained. The Lokhone shales provide a prospective shale oil play if the reservoir suitability to hydraulic fracturing can be defined. A basin wide study of the source rocks thickness, potential, maturation and expulsion histories in the Lokichar basin is recommended to better understand the present-day distribution of petroleum in the basin.


2020 ◽  
Vol 10 (4) ◽  
pp. 95-120
Author(s):  
Rzger Abdulkarim Abdula

Burial history, thermal maturity, and timing of hydrocarbon generation were modeled for five key source-rock horizons at five locations in Northern Iraq. Constructed burial-history locations from east to west in the region are: Taq Taq-1; Qara Chugh-2; Zab-1; Guwair-2; and Shaikhan-2 wells. Generally, the thermal maturity status of the burial history sites based on increasing thermal maturity is Shaikhan-2 < Zab-1 < Guwair-2 < Qara Chugh-2 < Taq Taq-1. In well Qara Chugh-2, oil generation from Type-IIS kerogen in Geli Khana Formation started in the Late Cretaceous. Gas generation occurred at Qara Chugh-2 from Geli Khana Formation in the Late Miocene. The Kurra Chine Formation entered oil generation window at Guwair-2 and Shaikhan-2 at 64 Ma and 46 Ma, respectively. At Zab-1, the Baluti Formation started to generate gas at 120 Ma. The Butmah /Sarki reached peak oil generation at 45 Ma at Taq Taq-1. The main source rock in the area, Sargelu Formation started to generate oil at 47, 51, 33, 28, and 28 Ma at Taq Taq-1, Guwair-2, Shaikhan-2, Qara Chugh-2, and Zab-1, respectively. The results of the models demonstrated that peak petroleum generation from the Jurassic oil- and gas-prone source rocks in the most profound parts of the studied area occurred from Late Cretaceous to Middle Oligocene. At all localities, the Sargelu Formation is still within the oil window apart from Taq Taq-1 and Qara Chugh-2 where it is in the oil cracking and gas generation phase.


1973 ◽  
Vol 13 (1) ◽  
pp. 73 ◽  
Author(s):  
M. Shibaoka ◽  
A. J. R. Bennett ◽  
K. W. Gould

It is important that petroleum exploration geologists know the critical depth limits where oil is generated from original organic matter in sediments and where the oil changes to natural gas. Organic matter is very sensitive to temperature. The maximum temperature experienced is related to its depth of burial.CSIRO has used the composition and physical properties of various types of organic matter in shaly rocks as indicators for the degree of diagenesis caused by this heat alteration. The reflectance of vitrinite in associated coals is used as the primary standard, and carbon content of such coals as the secondary parameter to distinguish various stages of oil and gas generation. Depth-reflectance curves are useful 1., for estimating palaeogeothermal gradients, 2., for determining the degree of diagenesis at a particular depth and also 3., for estimating the approximate thickness of sediments subsequently lost after deposition.The petroleum potential of some Australian sedimentary basins is reviewed in the light of this knowledge. In the Northwest Shelf area and in the Capricorn and Otway Basins, the oil generation zone is deeper than in the Cooper, Galilee and Surat Basins. In the Bowen and Sydney Basins and several other small basins along the eastern coast of Australia, this zone is very shallow, and in some areas the oil generation zone has been completely lost by erosion. The areas most promising for oil fields are those where little erosion of sediments has taken place subsequent to deposition and diagenesis, provided that all other geologic factors for hydrocarbon accumulation are present.


2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


Author(s):  
Sebastian Grohmann ◽  
Susanne W. Fietz ◽  
Ralf Littke ◽  
Samer Bou Daher ◽  
Maria Fernanda Romero-Sarmiento ◽  
...  

Several significant hydrocarbon accumulations were discovered over the past decade in the Levant Basin, Eastern Mediterranean Sea. Onshore studies have investigated potential source rock intervals to the east and south of the Levant Basin, whereas its offshore western margin is still relatively underexplored. Only a few cores were recovered from four boreholes offshore southern Cyprus by the Ocean Drilling Program (ODP) during the drilling campaign Leg 160 in 1995. These wells transect the Eratosthenes Seamount, a drowned bathymetric high, and recovered a thick sequence of both pre- and post-Messinian sedimentary rocks, containing mainly marine marls and shales. In this study, 122 core samples of Late Cretaceous to Messinian age were analyzed in order to identify organic-matter-rich intervals and to determine their depositional environment as well as their source rock potential and thermal maturity. Both Total Organic and Inorganic Carbon (TOC, TIC) analyses as well as Rock-Eval pyrolysis were firstly performed for the complete set of samples whereas Total Sulfur (TS) analysis was only carried out on samples containing significant amount of organic matter (>0.3 wt.% TOC). Based on the Rock-Eval results, eight samples were selected for organic petrographic investigations and twelve samples for analysis of major aliphatic hydrocarbon compounds. The organic content is highly variable in the analyzed samples (0–9.3 wt.%). TS/TOC as well as several biomarker ratios (e.g. Pr/Ph < 2) indicate a deposition under dysoxic conditions for the organic matter-rich sections, which were probably reached during sporadically active upwelling periods. Results prove potential oil prone Type II kerogen source rock intervals of fair to very good quality being present in Turonian to Coniacian (average: TOC = 0.93 wt.%, HI = 319 mg HC/g TOC) and in Bartonian to Priabonian (average: TOC = 4.8 wt.%, HI = 469 mg HC/g TOC) intervals. A precise determination of the actual source rock thickness is prevented by low core recovery rates for the respective intervals. All analyzed samples are immature to early mature. However, the presence of deeper buried, thermally mature source rocks and hydrocarbon migration is indicated by the observation of solid bitumen impregnation in one Upper Cretaceous and in one Lower Eocene sample.


2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


2003 ◽  
Vol 43 (1) ◽  
pp. 117 ◽  
Author(s):  
C.J. Boreham ◽  
J.E. Blevin ◽  
A.P. Radlinski ◽  
K.R. Trigg

Only a few published geochemical studies have demonstrated that coals have sourced significant volumes of oil, while none have clearly implicated coals in the Australian context. As part of a broader collaborative project with Mineral Resources Tasmania on the petroleum prospectivity of the Bass Basin, this geochemical study has yielded strong evidence that Paleocene–Eocene coals have sourced the oil and gas in the Yolla, Pelican and Cormorant accumulations in the Bass Basin.Potential oil-prone source rocks in the Bass Basin have Hydrogen Indices (HIs) greater than 300 mg HC/g TOC. The coals within the Early–Middle Eocene succession commonly have HIs up to 500 mg HC/g TOC, and are associated with disseminated organic matter in claystones that are more gas-prone with HIs generally less than 300 mg HC/g TOC. Maturity of the coals is sufficient for oil and gas generation, with vitrinite reflectance (VR) up to 1.8 % at the base of Pelican–5. Igneous intrusions, mainly within Paleocene, Oligocene and Miocene sediments, produced locally elevated maturity levels with VR up to 5%.The key events in the process of petroleum generation and migration from the effective coaly source rocks in the Bass Basin are:the onset of oil generation at a VR of 0.65% (e.g. 2,450 m in Pelican–5);the onset of oil expulsion (primary migration) at a VR of 0.75% (e.g. 2,700–3,200 m in the Bass Basin; 2,850 m in Pelican–5);the main oil window between VR of 0.75 and 0.95% (e.g. 2,850–3,300 m in Pelican–5); and;the main gas window at VR >1.2% (e.g. >3,650 m in Pelican–5).Oils in the Bass Basin form a single oil population, although biodegradation of the Cormorant oil has resulted in its statistical placement in a separate oil family from that of the Pelican and Yolla crudes. Oil-to-source correlations show that the Paleocene–Early Eocene coals are effective source rocks in the Bass Basin, in contrast to previous work, which favoured disseminated organic matter in claystone as the sole potential source kerogen. This result represents the first demonstrated case of significant oil from coal in the Australian context. Natural gases at White Ibis–1 and Yolla–2 are associated with the liquid hydrocarbons in their respective fields, although the former gas is generated from a more mature source rock.The application of the methodologies used in this study to other Australian sedimentary basins where commercial oil is thought to be sourced from coaly kerogens (e.g. Bowen, Cooper and Gippsland basins) may further implicate coal as an effective source rock for oil.


2020 ◽  
Vol 10 (8) ◽  
pp. 3191-3206
Author(s):  
Olusola J. Ojo ◽  
Ayoola Y. Jimoh ◽  
Juliet C. Umelo ◽  
Samuel O. Akande

Abstract The Patti Formation which consists of sandstone and shale offers the best potential source beds in the Bida Basin. This inland basin is one of the basins currently being tested for hydrocarbon prospectivity in Nigeria. Fresh samples of shale from Agbaja borehole, Ahoko quarry and Geheku road cut were analysed using organic geochemical and palynological techniques to unravel their age, paleoecology, palynofacies and source bed hydrocarbon potential. Palynological data suggest Maastrichtian age for the sediments based on the abundance of microfloral assemblage; Retidiporites magdalenensis, Echitriporites trianguliformis and Buttinia andreevi. Dinocysts belonging to the Spiniferites, Deflandrea and Dinogymnium genera from some of the analysed intervals are indicative of freshwater swamp and normal sea conditions. Palynological evidence further suggests mangrove paleovegetation and humid climate. Relatively high total organic carbon TOC (0.77–8.95 wt%) was obtained for the shales which implies substantial concentration of organic matter in the source beds. Hydrocarbon source rock potential ranges from 0.19 to 0.70 mgHC/g.rock except for a certain source rock interval in the Agbaja borehole with high yield of 25.18 mgHC/g.rock. This interval also presents exceptionally high HI of 274 mgHC/g.TOC and moderate amount of amorphous organic matter. The data suggests that in spite of the favourable organic matter quantity, the thermal maturity is low as indicated by vitrinite reflectance and Tmax (0.46 to 0.48 Ro% and 413 to 475 °C, respectively). The hydrocarbon extracts show abundance of odd number alkanes C27–C33, low sterane/hopane ratio and Pr/Ph > 2. We conclude that the source rocks were terrestrially derived under oxic condition and dominated by type III kerogen. Type II organic matter with oil and gas potential is a possibility in Agbaja area of Bida Basin. Thermal maturity is low and little, or no hydrocarbon has been generated from the source rocks.


Sign in / Sign up

Export Citation Format

Share Document