Production Logging, Openhole-Log Interpretation Help Discover New Oil Reserves

2021 ◽  
Vol 73 (08) ◽  
pp. 42-43
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30644, “Discovery of New Oil Reserves by Combining Production Logging With Openhole-Log Interpretation in Low-Resistivity Pay,” by Xinlei Shi, Peichun Wang, and Jinxiu Xu, CNOOC, et al., prepared for the 2020 Offshore Technology Conference, originally scheduled to be held in Houston, 4–7 May. The paper has not been peer reviewed. Copyright 2020 Offshore Technology Conference. Reproduced by permission. In this paper, the authors examine the evaluation of a low-resistivity-pay siliciclastic reservoir in Bohai Bay, China. A significant amount of irreducible water is bound to the rock surface, dramatically lowering the resistivity of the pay zone. The authors explore a theory that the low resistivity is caused by bound water trapped in clay minerals, using production logging to provide the ground truth of reservoir fluids in the low-resistivity pay and improve the petrophysics model. With the improved model, production predictions were made for offset wells based on their openhole logs. The production histories of these wells are highly consistent with the authors’ predictions. Introduction LD oil field is in the eastern Bohai Sea, China, structurally in the transition zone between the Liaohe depression of the Tanlu fault and the Bozhong depression and at the dip end of the Bodong low uplift extending to the northeast. The main oil reservoirs are developed in the Guantao and Dongying formations. Reservoir depth ranges from approximately 1022.1 to 2585.8 m. Reservoir lithology is mainly sandstone and gravelly sandstone. The porosity distribution range of the Guantao formation is 24 to 30%. Permeability distribution range is 333 to 3333 md belonging to medium-high-porosity and - permeability reservoirs. The porosity distribution range of the Dongying formation is from 6 to 12%, and the permeability distribution range is from 3 to 33 md belonging to medium-low- porosity and -permeability reservoirs.

2020 ◽  
Vol 21 (3) ◽  
pp. 9-18
Author(s):  
Ahmed Abdulwahhab Suhail ◽  
Mohammed H. Hafiz ◽  
Fadhil S. Kadhim

   Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly composed of sandstone interlaminated with shale according to the interpretation of density, sonic, and gamma-ray logs. Interpretation of formation lithology and petrophysical parameters shows that Nu-1 is characterized by low shale content with high porosity and low water saturation whereas Nu-2 and Nu-4 consist mainly of high laminated shale with low porosity and permeability. Nu-3 is high porosity and water saturation and Nu-5 consists mainly of limestone layer that represents the water zone.


2020 ◽  
Author(s):  
Xinlei Shi ◽  
Peichun Wang ◽  
Jinxiu Xu ◽  
Hongwei Yang ◽  
Sainan Xu

2016 ◽  
Vol 18 (1) ◽  
pp. 39-53
Author(s):  
Omar Salih ◽  
Mahmoud Tantawy ◽  
Sayed Elayouty ◽  
Atef Abd Hady

2021 ◽  
Vol 73 (09) ◽  
pp. 58-59
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30407, “Case Study of Nanopolysilicon Materials’ Depressurization and Injection-Increasing Technology in Offshore Bohai Bay Oil Field KL21-1,” by Qing Feng, Nan Xiao Li, and Jun Zi Huang, China Oilfield Services, et al., prepared for the 2020 Offshore Technology Conference Asia, originally scheduled to be held in Kuala Lumpur, 2–6 November. The paper has not been peer reviewed. Copyright 2020 Offshore Technology Conference. Reproduced by permission. Nanotechnology offers creative approaches to solve problems of oil and gas production that also provide potential for pressure-decreasing application in oil fields. However, at the time of writing, successful pressure-decreasing nanotechnology has rarely been reported. The complete paper reports nanopolysilicon as a new depressurization and injection-increasing agent. The stability of nanopolysilicon was studied in the presence of various ions, including sodium (Na+), calcium (Ca2+), and magnesium (Mg2+). The study found that the addition of nanomaterials can improve porosity and permeability of porous media. Introduction More than 600 water-injection wells exist in Bohai Bay, China. Offshore Field KL21-1, developed by water-flooding, is confronted with the following challenges: - Rapid increase and reduction of water-injection pressure - Weak water-injection capacity of reservoir - Decline of oil production - Poor reservoir properties - Serious hydration and expansion effects of clay minerals To overcome injection difficulties in offshore fields, conventional acidizing measures usually are taken. But, after multiple cycles of acidification, the amount of soluble substances in the rock gradually decreases and injection performance is shortened. Through injection-performance experiments, it can be determined that the biological nanopolysilicon colloid has positive effects on pressure reduction and injection increase. Fluid-seepage-resistance decreases, the injection rate increases by 40%, and injection pressure decreases by 10%. Features of Biological Nanopolysilicon Systems The biological nanopolysilicon-injection system was composed of a bioemulsifier (CDL32), a biological dispersant (DS2), and a nanopolysilicon hydrophobic system (NP12). The bacterial strain of CDL32 was used to obtain the culture colloid of biological emulsifier at 37°C for 5 days. DS2 was made from biological emulsifier CDL32 and some industrial raw materials described in Table 1 of the complete paper. Nanopolysilicon hydrophobic system NP12 was composed of silicon dioxide particles. The hydrophobic nanopolysilicons selected in this project featured particle sizes of less than 100 nm. In the original samples, a floc of nanopolysilicon was fluffy and uniform. But, when wet, nanopolysilicon will self-aggregate and its particle size increases greatly. At the same time, nanopolysilicon features significant agglomeration in water. Because of its high interface energy, nanopolysilicon is easily agglomerated, as shown in Fig. 1.


2021 ◽  
Author(s):  
Hongtao Liu ◽  
Zhengqing Ai ◽  
Jingcheng Zhang ◽  
Zhongtao Yuan ◽  
Jianguo Zeng ◽  
...  

Abstract The average porosity and permeability in the developed clastic rock reservoir in Tarim oilfield in China is 22.16% and 689.85×10-3 μm2. The isolation layer thickness between water layer and oil layer is less than 2 meters. The pressure of oil layer is 0.99 g/cm3, and the pressure of bottom water layer is 1.22 g/cm3, the pressure difference between them is as bigger as 12 to 23 MPa. It is difficult to achieve the layer isolation between the water layer and oil layer. To solve the zonal isolation difficulty and reduce permeable loss risk in clastic reservoir with high porosity and permeability, matrix anti-invasion additive, self-innovate plugging ability material of slurry, self-healing slurry, open-hole packer outside the casing, design and control technology of cement slurry performance, optimizing casing centralizer location technology and displacement with high pump rate has been developed and successfully applied. The results show that: First, the additive with physical and chemical crosslinking structure matrix anti-invasion is developed. The additive has the characteristics of anti-dilution, low thixotropy, low water loss and short transition, and can seal the water layer quickly. Second, the plugging material in the slurry has a better plugging performance and could reduce the permeability of artificial core by 70-80% in the testing evaluation. Third, the self-healing cement slurry system can quickly seal the fracture and prevent the fluid from flowing, and can ensuring the long-term effective sealing of the reservoir. Fourth, By strict control of the thickening time (operation time) and consistency (20-25 Bc), the cement slurry can realize zonal isolation quickly, which has achieved the purpose of quickly sealing off the water layer and reduced the risk of permeable loss. And the casing centralizers are used to ensure that the standoff ratio of oil and water layer is above 67%. The displacement with high pump rate (2 m3/min, to ensure the annular return velocity more than 1.2 m/s) can efficiently clean the wellbore by diluting the drilling fluid and washing the mud cake, and can improve the displacement efficiency. The cementing technology has been successfully applied in 100 wells in Tarim Oilfield. The qualification rate and high quality rate is 87.9% and 69% in 2019, and achieve zone isolation. No water has been produced after the oil testing and the water content has decreased to 7% after production. With the cementing technology, we have improved zonal isolation, increased the crude oil production and increased the benefit of oil.


2020 ◽  
Vol 21 (2) ◽  
pp. 339
Author(s):  
I. Carneiro ◽  
M. Borges ◽  
S. Malta

In this work,we present three-dimensional numerical simulations of water-oil flow in porous media in order to analyze the influence of the heterogeneities in the porosity and permeability fields and, mainly, their relationships upon the phenomenon known in the literature as viscous fingering. For this, typical scenarios of heterogeneous reservoirs submitted to water injection (secondary recovery method) are considered. The results show that the porosity heterogeneities have a markable influence in the flow behavior when the permeability is closely related with porosity, for example, by the Kozeny-Carman (KC) relation.This kind of positive relation leads to a larger oil recovery, as the areas of high permeability(higher flow velocities) are associated with areas of high porosity (higher volume of pores), causing a delay in the breakthrough time. On the other hand, when both fields (porosity and permeability) are heterogeneous but independent of each other the influence of the porosity heterogeneities is smaller and may be negligible.


2014 ◽  
Vol 51 (8) ◽  
pp. 783-796 ◽  
Author(s):  
Simon Weides ◽  
Inga Moeck ◽  
Jacek Majorowicz ◽  
Matthias Grobe

Recent geothermal exploration indicated that the Cambrian Basal Sandstone Unit (BSU) in central Alberta could be a potential target formation for geothermal heat production, due to its depth and extent. Although several studies showed that the BSU in the shallower Western Canada Sedimentary Basin (WCSB) has good reservoir properties, almost no information exists from the deeper WCSB. This study investigated the petrography of the BSU in central Alberta with help of drill cores and thin sections from six wells. Porosity and permeability as important reservoir parameters for geothermal utilization were determined by core testing. The average porosity and permeability of the BSU is 10% and <1 × 10−14 m2, respectively. A zone of high porosity and permeability was identified in a well located in the northern part of the study area. This study presents the first published geomechanical tests of the BSU, which were obtained as input parameters for the simulation of hydraulic stimulation treatments. The BSU has a relatively high unconfined compressive strength (up to 97.7 MPa), high cohesion (up to 69.8 MPa), and a remarkably high friction coefficient (up to 1.22), despite a rather low tensile strength (<5 MPa). An average geothermal gradient of 35.6 °C/km was calculated from about 2000 temperature values. The temperature in the BSU ranges from 65 to 120 °C. Results of this study confirm that the BSU is a potential geothermal target formation, though hydraulic stimulation treatments are required to increase the permeability of the reservoir.


2016 ◽  
Author(s):  
Paola Ronchi ◽  
Giovanni Gattolin ◽  
Alfredo Frixa ◽  
Chiara Margliulo

ABSTRACT During the Early Cretaceous South-Atlantic opening, in large lacustrine basins a series of shallow water carbonate platforms grew along lake margins and paleo-highs. These carbonates are giant reservoirs in the Brasil offshore, while in Angola are productive in Cabinda (Lower Congo Basin) and are being explored in the Kwanza Basin with minor success. These carbonates have peculiar facies associations represented mainly by microbialites and coquinas, and are affected by dolomitization which modified the original pore system in different ways. In presence of deep-seated extensional faults, bounding the paleo-highs, the hydrothermal dolomitization affected the reservoir carbonate improving its quality; in fact the hydrothermal dolomite produced the so-called zebra dolomite which is characterized by high porosity and permeability. On the other hand, when there is a limited influx of hydrothermal fluid, some dolomitization is observed, but it did not produce the zebra facies and the poro-perm system has lower quality. These two examples suggest that the understanding of the distribution of deep faults may help in the prediction of the diagenetic effects and resulting reservoir properties.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Xue-bo Zhang ◽  
Ming Yang

Determining the optimal extrication location of the high extraction roadway can improve the gas extrication effect of highly gassy mine and solve the problem of gas concentration overrun at the upper corner, which is of great significance to safety and efficient mine production. According to the actual situation of mine, the gas gushing amount in the goaf, pressure difference at both ends of the working face, the 3D porosity, and permeability distribution of the caving zone and fissure zone were obtained by field measurement and numerical calculation. Through theoretical calculation, the proper extraction site of a high-position alley was determined. On this basis, the optimal extraction site of a high-position alley was determined by numerical analysis of the gas extraction effect at different sites. The results show that as the perpendicular distance between high-position alley and goaf floor increases, the gas extraction amount increases first and then decreases. The concentration of extraction gas gradually increases, and the increasing trend is gradually diminished. With the increase of the horizontal distance between the air return way and the high-position alley, the gas extraction amount and gas extraction concentration increase first and then decrease. The optimal extraction site of a high-position alley should be 39 m vertically away from the goaf floor and 30 m horizontally away from the air return way.


2018 ◽  
Vol 785 ◽  
pp. 46-51
Author(s):  
Ivan Nesterov ◽  
Marsel Kadyrov ◽  
Andrey Ponomarev ◽  
Denis Drugov ◽  
Mikhail Zavatskij

Bottomhole formation zone processing (BFZP) is performed at all phases of oil field development to restore and improve the filtration-capacity properties of the bottomhole formation zone to improve the oil yield. The choice of the BFZP technology is made basing on the study of the reasons for low well yield with account for the collector properties of productive sediments and rheological characteristics of the formation fluids, as well as a special geologic-geophysical and development-hydrodynamic study for the assessment of the porosity and permeability properties of BFZ. The research objective is to develop the criteria and assess the conditions for the application of bottomhole formation zone processing technologies for the upper Jurassic formations. Analysis of the results of laboratory and industrial research allowed offering the most efficient technologies for the influence on the upper Jurassic deposits.


Sign in / Sign up

Export Citation Format

Share Document