Chemical Sand Consolidation and Agglomeration Control Sand Production

2021 ◽  
Vol 73 (10) ◽  
pp. 73-74
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202419, “Performance Review of Chemical Sand Consolidation and Agglomeration for Maximum Potential as Downhole Sand Control: An Operator’s Experience,” by Nur Atiqah Hassan, SPE, Wei Jian Yeap, SPE, and Ratan Singh, Petronas, et al., prepared for the 2020 SPE Asia Pacific Oil and Gas Conference and Exhibition, originally scheduled to be held in Perth, Australia, 20–22 October. The paper has not been peer reviewed. Chemical sand consolidation (SCON) and sand agglomeration have been identified as effective chemical treatments to control sand production downhole. Both treatments involve injection of chemicals into the near-wellbore area of the reservoir with the aim of improving the strength of the formation and thus reducing the tendency for sand production. The complete paper presents lessons learned and best practices from several chemical SCON and sand-agglomeration treatments performed in mature fields in Malaysia. SCON and Sand Agglomeration History and Performance Petronas has deployed approximately 20 SCON and three sand-agglomeration treatments over nine different offshore fields since 2009. Of 20 planned SCON jobs, four were suspended for a variety of reasons such as budget constraints or operational complexity. Of the 16 SCON jobs executed, a success rate of approximately 75% was achieved. The number of sand agglomeration jobs executed is significantly lower; only three were completed, with one failure case. In terms of effective production, SCON has better overall performance than sand agglomeration. The average effective production period for SCON is approximately 2.9 years, while the average effective production period for sand agglomeration is approximately 2.5 years. Criteria for Candidate Selection Completion Type. - In considering the historical success rate of SCON and sand-agglomeration jobs according to completion type, most viable candidates were completed with perforated cased hole, contributing to approximately 87% of all chemical SCON and sand-agglomeration jobs. Despite the challenges caused by chemical placement in openhole completions, all of these jobs have been successful because of stringent planning. Overall, the success rate for chemical SCON and agglomeration under cased-hole completion is approximately 73%. Perforation Interval Length. - For effective chemical placement, the perforation interval length is limited to 20 ft according to internal guidelines, especially for cases using bullheading as the placement method. For perforation interval lengths greater than 120 ft, the failure rate can be as high as 10%. According to historical trends, no failure was encountered for chemical SCON and sand-agglomeration jobs with perforation intervals of less than 40 ft. The historical analysis indicates, therefore, that the benchmark criteria of perforation interval length could be extended to 40 ft from the current 20 ft. Placement Method. - Most chemical treatment jobs executed were completed using bullheading, contributing to approximately 80% of all chemical SCON and sand-agglomeration jobs. No failure cases were recorded for treatments that used coiled tubing because of the controlled chemical placement. Perforation intervals of almost 100 ft using bullheading placement methods have succeeded. One contributing factor for successful treatment in long intervals using bullheading is the use of diversion techniques. Nitrogen is commonly used as part of a diversion method along with chemical application.

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250466
Author(s):  
Fahd Saeed Alakbari ◽  
Mysara Eissa Mohyaldinn ◽  
Mohammed Abdalla Ayoub ◽  
Ali Samer Muhsan ◽  
Ibnelwaleed A. Hussein

Sand management is essential for enhancing the production in oil and gas reservoirs. The critical total drawdown (CTD) is used as a reliable indicator of the onset of sand production; hence, its accurate prediction is very important. There are many published CTD prediction correlations in literature. However, the accuracy of most of these models is questionable. Therefore, further improvement in CTD prediction is needed for more effective and successful sand control. This article presents a robust and accurate fuzzy logic (FL) model for predicting the CTD. Literature on 23 wells of the North Adriatic Sea was used to develop the model. The used data were split into 70% training sets and 30% testing sets. Trend analysis was conducted to verify that the developed model follows the correct physical behavior trends of the input parameters. Some statistical analyses were performed to check the model’s reliability and accuracy as compared to the published correlations. The results demonstrated that the proposed FL model substantially outperforms the current published correlations and shows higher prediction accuracy. These results were verified using the highest correlation coefficient, the lowest average absolute percent relative error (AAPRE), the lowest maximum error (max. AAPRE), the lowest standard deviation (SD), and the lowest root mean square error (RMSE). Results showed that the lowest AAPRE is 8.6%, whereas the highest correlation coefficient is 0.9947. These values of AAPRE (<10%) indicate that the FL model could predicts the CTD more accurately than other published models (>20% AAPRE). Moreover, further analysis indicated the robustness of the FL model, because it follows the trends of all physical parameters affecting the CTD.


SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2195-2208 ◽  
Author(s):  
Siti Nur Shaffee ◽  
Paul F. Luckham ◽  
Omar K. Matar ◽  
Aditya Karnik ◽  
Mohd Shahrul Zamberi

Summary In many industrial processes, an effective particle–filtration system is essential for removing unwanted solids. The oil and gas industry has explored various technologies to control and manage excessive sand production, such as by installing sand screens or injecting consolidation chemicals in sand–prone wells as part of sand–management practices. However, for an unconsolidated sandstone formation, the selection and design of effective sand control remains a challenge. In recent years, the use of a computational technique known as the discrete–element method (DEM) has been explored to gain insight into the various parameters affecting sand–screen–retention behavior and the optimization of various types of sand screens (Mondal et al. 2011, 2012, 2016; Feng et al. 2012; Wu et al. 2016). In this paper, we investigate the effectiveness of particle filtration using a fully coupled computational–fluid–dynamics (CFD)/DEM approach featuring polydispersed, adhesive solid particles. We found that an increase in particle adhesion reduces the amount of solid in the liquid filtrate that passes through the opening of a wire–wrapped screen, and that a solid pack of particle agglomerates is formed over the screen with time. We also determined that increasing particle adhesion gives rise to a decrease in packing density and a diminished pressure drop across the solid pack covering the screen. This finding is further supported by a Voronoi tessellation analysis, which reveals an increase in porosity of the solid pack with elevated particle adhesion. The results of this study demonstrate that increasing the level of particle agglomeration, such as by using an adhesion–promoting chemical additive, has beneficial effects on particle filtration. An important application of these findings is the design and optimization of sand–control processes for a hydrocarbon well with excessive sand production, which is a major challenge in the oil and gas industry.


2021 ◽  
Author(s):  
Rishabh Bharadwaj ◽  
Manish Kumar ◽  
Shashwat Harsh ◽  
Deepak Mishra

Abstract Sand control poses huge financial loses during production operations particularly in mature fields. It hinders economic oil production rates as well as damages downhole and surface equipment due to its abrasive action. Excessive sand production rates can plug the wellhead, flow lines, and separators which can result in detrimental well control situations. This paper will provide a comparative study on various sand control mechanisms by reviewing the latest advancements in sand management techniques. This study evaluates the performance of through-tubing sand screens, internal gravel pack, cased hole expandable sand screen, modular gravel pack system, openhole standalone screen, multi-zone single trip gravel pack, slim gravel pack, and chemical sand consolidation mechanisms. Various field examples from Niger-Delta, Mahakam oil and gas block, and offshore Malaysia are examined to gain an insight about the application of aforementioned sand control methods for different type of reservoirs. This study enables the operator to tackle the sand production problem according to the well construction changes during the life cycle of a well. The internal gravel pack completion system delivers a prolonged plateau production regime in shallow depths. In high drawdown conditions, chemical sand consolidation completion incurs early water breakthrough and elevated sand production. Chemical sand consolidation technique yields better results in deeper formations and its placement can be improvised by implementing coiled tubing and diversion techniques for multi-stage treatments. Depending on the well inclination, gas-water contact, producing zone type and thickness, well age, and economy, the completion types out of modular gravel pack, openhole standalone screen, slim gravel pack, and through tubing sand screen is recommended accordingly. Acquiring offset data, well log analysis, particle size distribution and performing pressure tests will improve the data quality of the obtained reservoir properties. This will further help in the selection of the most suitable sand control method for the target reservoir.


2021 ◽  
Vol 73 (08) ◽  
pp. 51-52
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202246, “Wheatstone: What We Have Learned in Early Production Life,” by John Pescod, SPE, Paul Connell, SPE, and Zhi Xia, Chevron, et al., prepared for the 2020 SPE Asia Pacific Oil and Gas Conference and Exhibition, originally scheduled to be held in Perth, Australia, 20–22 October. The paper has not been peer reviewed. Wheatstone and Iago gas fields, part of the larger Wheatstone project, commenced production in June 2017. The foundation subsea system includes nine Wheatstone and Iago development wells tied back to a central Wheatstone platform (WP) for processing. Hydrocarbons then flow through an export pipeline to an onshore processing facility that includes two liquefied-natural-gas (LNG) trains and a domestic gas facility. The complete paper highlights some of the key learnings in well and reservoir surveillance analysis and optimization (SA&O) developed using data from early production. Asset Overview Chevron Australia’s Wheatstone project is in the North West Shelf region offshore Australia (Fig. 1). Two gas fields, Wheatstone and Iago (along with a field operated by a different company), currently tie into the WP in the Northern Carnarvon Basin. These two gas fields are in water depths between 150 and 400 m. The platform processes gas and condensate through dehydration and compression facilities before export by a 220-km, 44-in., trunkline to two 4.45-million-tonnes/year LNG trains and a 200 tera-joule/day domestic gas plant. A Wheatstone/Iago subsea system consisting of two main corridors delivers production from north and south of the Wheatstone and Iago fields to the WP. Currently, the subsea system consists of nine subsea foundation development wells, three subsea production manifolds, two subsea 24-in. production flowlines, and two subsea 14-in. utility lines. The nine foundation development wells feed the subsea manifolds at rates of up to 250 MMscf/D. These wells have openhole gravel-pack completions for active sand control and permanent downhole gauges situated approximately 1000-m true vertical depth above the top porosity of multi-Darcy reservoir intervals for pressure and temperature monitoring. All wells deviate between 45 and 60° through the reservoir with stepout lengths of up to 2.5 km. The two subsea 24-in. production flowlines carry production fluids from the subsea manifolds to two separation trains on the WP. Each platform inlet production separator can handle up to 800 MMscf/D. The two 14-in. utility flowlines installed to the subsea manifolds allow routing of a single well to the platform multiuse header, which can direct flow into the multiuse separator (MUS) or other production separators at a rate of 250 MMscf/D.


Author(s):  
Nataliya Marchenko

It is well-known that navigating the waterway from the primary trade hubs in northern Europe to the Asia-Pacific ports and contrariwise along the Russian Arctic Coast (Northern Sea Route - NSR) is much shorter and faster, than southern ways via Suez or around Africa. The NSR can significantly save costs (through saving time and fuel) and avoids the risk of attack by pirates. In addition, an increase in oil and gas activity in the North, forecasts of global warming and an ice-free Arctic have stimulated interest in Arctic navigation. However, Arctic transportation poses significant challenges because of the heavy ice conditions that exist during both the winter and summer. The profitability of using the NSR is called into question if possible high tariffs are included in the cost estimates. For many years, the NSR was principally used for internal Russian transport and since the end of the 1980s up until 2010, it was in stagnation with total amount of cargo transported annually stood at less than two million tons. Important political decisions in the 90s and increased economic feasibility intensified traffic and freight turnover. In 2013, the NSR Administration (NSRA) was established, new rules for navigation were approved and tariff policies were modified. In 2013, the NSRA issued 635 permits to sail in NSR waters, and 71 transit voyages have since been completed. The total amount of transit cargo was 1.36 million tons. More than 40% of the total number of permits were issued to vessels without ice class [1] according to the Russian Maritime Register of Shipping [2]. There are strong technical requirements for vessels attempting to sail the NSR; regardless, several accidents occurred in 2012–2013. Two vessels were dented by ice in the Chukchi Sea in 2012. A tanker was holed in September 2013 and created a real danger of an ecological disaster from fuel leakage for several days. Despite the expectation of an ice-free Arctic, the ice conditions in 2013 were rather difficult, and the Vilkitsky Strait (a key strait in the NSR between the Kara and Laptev seas) was closed by ice for almost the entire navigation period. In this paper, we review the current situation in the Russian Arctic, including political and administrative actions, recent accidents and the associated conditions and lessons learned.


2017 ◽  
Vol 2017 (1) ◽  
pp. 657-677
Author(s):  
Thomas Coolbaugh ◽  
Geeva Varghese ◽  
Lau Siau Li

ABSTRACT Following the Macondo Incident, the international oil and gas industry spent significant time and effort analyzing lessons learned and implementing key projects to ensure that critical response and preparedness issues that were identified are addressed to improve response capabilities. The Global Dispersant Stockpile (GDS) was established as part of a post-Macondo Joint Industry Project through Oil Spill Response Limited (OSRL), recognizing that delivery of sufficient quantities of dispersant is a key element for a successful dispersant operation, especially during the initial phases of a large scale response to an event such as a subsea well blowout. Taking into account the global approval status and proven effectiveness on a range of crude oils, three key oil dispersants, Finasol® OSR 52 (Total), Corexit® EC9500A (Nalco) and Slickgone® NS (Dasic) were selected for the Global Dispersant Stockpile. A total of 5,000 m3 of these dispersants are now stored and ready to be deployed from five strategically positioned global locations. For example, sizable volumes of two of these products (total volume = 700 m3) are located at OSRL’s response base in Singapore, which can be quickly mobilized to support a response in the Asia Pacific region. An ongoing effort associated with the management of the GDS is to enable the pre-approval of at least one of the three products for countries in the region where spill response may be required. At present, this is not the case in the region for a variety of reasons, e.g., toxicity concerns and biodegradation processes of dispersed oil. A particularly cautious approach by regulatory authorities following the Macondo incident, coupled with a number of other specific regional concerns, has exacerbated the issue of obtaining and maintaining dispersant approvals in the region. The aim of this paper is to identify and discuss the existing regulatory framework governing the dispersant product approval process and dispersant use authorization for countries in Asia Pacific. The paper will detail the present status of regulations related to dispersant use for a number of countries in the region, the potential challenges associated with achieving permissions in countries with no regulations and a discussion of strategies to address identified obstacles. Additionally the activities that are being undertaken to expand regulatory approvals will also be addressed. It is anticipated that a greater understanding of the reasoning behind the GDS will facilitate a positive regulatory perspective and the potential for dispersant pre-approval in the region.


2021 ◽  
Author(s):  
Irfan Taufik Rau ◽  
Henricus Herwin ◽  
Bhayu Widyoko ◽  
Iswahyuni Fifthana Hayati

Abstract Mahakam Block has been in operation for nearly half a century with cumulative production of approximately 20 trillion cubic feet of gas and 1.5 billion barrels of oil. Mature field challenges have become more evident as portrayed by declining production, more complex surface constraints, more challenging profitability of new projects and decreasing resources of new wells, which are also exacerbated by external factors such as volatility of oil and gas prices. Despite the aforementioned challenges and complexity in terms of operating numerous fields with different characteristics, Mahakam is currently still one of the biggest producing blocks in Indonesia. The success of sustaining production and prolonging the life of Mahakam is the result of continuous innovations, improvements and optimizations on various aspects over the years. Subsurface innovative ideas by restudying and redefining geological concepts has led Pertamina Hulu Mahakam (PHM) to drill step-out wells in Handil, Tunu, South Mahakam and Sisi Nubi fields that deliver positive results and open new opportunities. In the non-subsurface aspect, Indonesia's first Plan of Development that combines higher and lower value projects across fields called OPLL (Optimasi Pengembangan Lapangan-Lapangan) was initiated in order to develop fields with marginal value and to achieve economy of scale. Moreover, Capital Expenditure (CAPEX) optimization through evolution of platform design, well architecture and sand control method is crucial for exploitation of targets with lower resources over time. PHM has also launched CLEOPATRA (Cost Effectiveness and Lean Operations in Mature Asset), later renamed to LOCOMOTIVE-8 (Low Operations Cost of Mahakam to Achieve Effectiveness and Efficiencies), to achieve Operating Expenditure (OPEX) efficiency through various initiatives driven by each entity. Due to cost of money, budget accuracy is as important as expenditures reduction meaning that more detailed and deterministic budget estimation is necessary. In addition to optimizing cost structure, PHM strives to carry out gas commercialization efforts to improve revenue streams. In this rapidly changing era, especially for Mahakam, paradigm shift becomes highly critical. Changes in the structure and size of organization is essential to adjust with business dynamics. Adaptive organization structure is performed through digitalization and competency improvement to reduce repetitive tasks and increase productivity per capita. Cooperation between neighboring companies brings mutual benefit by sharing rig, transportation means, and pipeline network systems. Mutual benefit opportunity is also available between the company and Indonesian government by amendment of fiscal terms with the aim to enable the execution of sub-economic projects. Ultimately, one effort alone may be insignificant, but the combination of all of the efforts will be the key to the continuation of Mahakam story.


2021 ◽  
Author(s):  
Babalola Daramola ◽  
Chidubem Martins Alinnor

Abstract This paper presents the lessons learned from optimising the sand control and management strategies of an oil field (Field E) after multiple sanding events and well failures. It presents how the old sand control solution was selected, the failure root causes, and the remediation options considered. The new sand control method, and the performance of two re-drilled wells after two years of production are also presented. Field E is a sandstone field with oil and gas-cap gas at initial conditions, and was initially developed with 5 production wells, 2 water injection wells, and 2 gas injection wells. The development wells were drilled from an offshore platform, and completed with stand-alone screens (SAS) in 2013. Oil production commenced in late 2013, and within three years, sand production was observed, and 4 of the 5 oil production wells had failed. The 4 wells were re-drilled in 2017, and the sand control strategy was changed from stand-alone screens to frac-packs. Key lessons learned include completing sand strength studies pre-development, avoiding off-the-shelf sand control solutions, and completing sand control design studies based on service contractor capability, fines control, oil production rates, and sand control as key selection factors. Nearby wells should be shut in during infill drilling operations to avoid short circuits, drilling mud losses, completions damage, and well integrity failures. It is recommended that the bean up procedures of wells with sanding events are changed to slow bean up to preserve well integrity, oil production, and cash revenues. The asset team should consider installing sliding sleeves or inflow control devices for zonal testing and to choke or close sand production zones if needed. The asset team should also consider installing a test pipeline and a test separator to allocate sand production volumes from each well, clean up new wells, sample the wells for water salinity measurements, and other benefits.


2021 ◽  
Author(s):  
A. I. Biladi

Sand production is almost an inevitable problem in oil and gas production facilities. As the reservoir depletes, sand grains from the reservoir begin to flow into the wellbore, this can cause serious problems to the wellbore. Excessive sand production can eventually plug and erode tubing, casing, flowlines, and surface equipment or even lead to formation collapse. In general, once sand production has occurred and if it is not handled properly it can end the production life of a reservoir and wells. This problem mostly occurs in mature fields with marginal economics for workover. The more reasonable option is to predict or mitigate the sand production, which can help identify the most economical way of sand control methods at the early stage. Many conventional sand prediction techniques have been developed which are based on field observation and experience, laboratory sand production experiments, and theoretical or numerical modeling. These conventional techniques have proven their effectiveness, but to achieve them can be time-consuming and costly. In this paper, we try to predict sand production with high efficiency and accuracy by using a quick simulator. Integrated Sand Control Analysis or ISCA is a simple simulator to help predict early sand production based on critical borehole and calculate critical drawdown pressure prediction. ISCA is supported by several mathematical models that function to predict various types of formation. Integrated with Machine Learning makes ISCA also compatible with big data analysis. The results in this study show that the combination of Machine Learning and analytical model can achieve accuracy above 90% based on the comparison of laboratory results with software predictions. With a high level of accuracy results this software can be considered as a reliable tool to predict and analyze sand production.


2021 ◽  
Vol 73 (10) ◽  
pp. 67-67
Author(s):  
Imran Abbasy

Our industry is under pressure to produce cleaner energy. That is the mantra, more so than a few years ago. A recent report from the International Energy Agency suggested that all greenfield developments in the oil and gas sector should be stopped forthwith if we are to achieve the net-zero target by 2050. That essentially means that we squeeze what we can from the not-so-easy and mature reservoirs, many of which have sand-control problems. Perhaps that is the reason most operators are working ever harder to manage and produce such assets, a trend reflected in the number of papers written. More importantly, a large proportion of papers this year were on sand consolidation and through-tubing exclusion methods, which primarily target mature producing reservoirs. A few technology trends are becoming apparent. There is a move to gravel pack longer and longer horizontal sections. It is now possible to pack more than 7,000 ft with zonal isolation. Through-tubing sand-control remediation continues to evolve. Sand consolidation is moving toward nanoparticles, with a promise of better regained permeability. Further strides have been made in developing filters to achieve behind-screen compliance for better sand retention. Industry has been enchanted by what data analytics and machine learning can potentially offer, and perhaps rightly so. Several papers this year apply these tools to sand management. For those interested, I would recommend paper SPE 200949 and OTC 31234 as further reading. Unfortunately, from a sand-control perspective, I do not yet see a compelling narrative. One interesting statistic that I stole from a LinkedIn post is that the rising 3-year trend of papers in OnePetro on this subject has fallen dramatically between 2020 and 2021. I have not independently verified these figures, but it does tell a story. Is the excitement waning? Recommended additional reading at OnePetro: www.onepetro.org. SPE 203238 - Sanding Propensity Prediction Technology and Methodology Comparison by Surej Kumar Subbiah, Universiti Teknologi Malaysia and Schlumberger, et al. SPE 201768 - Using Artificial Intelligence for Determining Threshold Sand Rates From Acoustic Monitors by Srinivas Swaroop Kolla, The University of Tulsa, et al. OTC 30386 - Pioneering Slickline Deployed Through Tubing Gravel Pack in Malaysia: Successful Case Study and Lessons Learned by Ertiawati Mappanyompa, Petronas, et al.


Sign in / Sign up

Export Citation Format

Share Document