In-Situ Leaching of South Texas Uranium Ores - Part 1: Laboratory Studies of Ore Composition and Leaching Performance

1983 ◽  
Vol 23 (02) ◽  
pp. 377-386 ◽  
Author(s):  
J.M. Paul ◽  
T.F. Tsui ◽  
J.T. Edwards ◽  
B.G. Holmes ◽  
P.B. Venuto

Abstract This paper presents data on mineralogy and laboratory chemical-leaching tests for ore samples from several areas of the south Texas tertiary Catahoula formation. Optical microscope, electron microprobe, spectroscopic, X-ray diffraction (XRD), and various chemical analyses were performed. Batch screening tests gave qualitative estimates of leach rate and potential recovery. Packed column tests using hydrogen peroxide or pressurized oxygen gave more quantitative recovery estimates. The frequently friable sandstones contained highly variable amounts of quartz, feldspar, calcite, and clay, and in some cases, zeolite or mica. Clays were mainly mixed layer illite/smectite type. High cation exchange capacities (CEC's) correlated. with clay (and zeolite) content, while high reducing capacities were often associated with pyrite level. Coffinite, in various environments, was pyrite level. Coffinite, in various environments, was the main uranium mineral. With batch tests using pseudo-first-order rate constants, ore leach rates were pseudo-first-order rate constants, ore leach rates were generally characterized as "fast" on a scale of fast, intermediate, and slow. However, there was variability in leach rates, both in samples from different areas and in samples taken at different depths in the same well. Fast rates and recoveries greater than 80% were observed in most column pack tests, but there was variation with leachate composition and sample source. The chemistry and kinetics of leaching are also discussed. Introduction In-situ leaching has become an important alternative to open-pit and shaft-mining recovery of uranium. It has the potential of recovering reserves not presently minable by conventional techniques with minimal disturbance of the surface environment. Water requirements of in-situ leaching can be up to 30 times less than a comparable mine, and there are no undesirable tailings ponds. It is physically less hazardous than conventional mining methods. The increasing number of commercial scale in-situ operations is evidence of the emerging potential of this mining method. As more forms of alternative energy are sought to offset shortages and dependency on imported oil, increased production of uranium is inevitable. Current uranium production from in-situ mining is estimated to be 9% of the U.S. total. Considerable uranium reserves are found in south Texas in the Oakville (Miocene) and Catahoula (Oligocene) formations and the Jackson formation (Eocene). The importance of this resource is evidenced by the number of leaching permits issued by the State of Texas in the past 6 years. Larson reviewed early leaching activities in south Texas and other areas of the U.S. Many leaching studies have been reported for south Texas, including laboratory kinetics of leaching, case histories of field operations, and commercialsize projects. The existence of about 12 pilot and commercial-scale; in-situ leaching operations in south Texas indicates the great interest in this technology. The distribution of these sites parallels the Texas coast. They are also generally located in arid, gently rolling terrain. P. 377

2011 ◽  
Vol 11 (1) ◽  
pp. 129-134 ◽  
Author(s):  
A. Dulov ◽  
N. Dulova ◽  
Y. Veressinina ◽  
M. Trapido

The degradation of propoxycarbazone-sodium, an active component of commercial herbicide, in aqueous solution with ozone, UV photolysis and advanced oxidation processes: O3/UV, O3/UV/H2O2, H2O2/UV, and the Fenton process was studied. All these methods of degradation proved feasible. The kinetics of propoxycarbazone-sodium degradation in water followed the pseudo-first order equation for all studied processes except the Fenton treatment. The application of schemes with ozone demonstrated low pseudo-first order rate constants within the range of 10−4 s−1. Addition of UV radiation to the processes improved the removal of propoxycarbazone-sodium and increased the pseudo-first order rate constants to 10−3 s−1. The Fenton process was the most efficient and resulted in 5 and 60 s of half-life and 90% conversion time of propoxycarbazone-sodium, respectively, at 14 mM H2O2 concentration. UV treatment and the Fenton process may be recommended for practical application in decontamination of water or wastewater.


1977 ◽  
Vol 23 (9) ◽  
pp. 1527-1530 ◽  
Author(s):  
R M Shoucri ◽  
M Pouliot

Abstract The Jaffé reaction for creatinine assay appears to follow pseudo-first-order kinetics; first-order rate constants are different for different samples. Rate constants for 10 different serum samples varied from a low value of 0.0040 +/- 0.0003 s-1 to 0.0084 +/- 0.0008 s-1. We describe an approach for determining first-order rate constants from kinetic data and discuss the effects of the above observations on the mathematical formulations required for reliable kinetic determinations of creatinine.


1988 ◽  
Vol 66 (10) ◽  
pp. 2524-2531 ◽  
Author(s):  
John W. Bunting ◽  
Mark A. Luscher

The kinetics of the reduction of the 3-cyano-1-methylquinolinium, 4-cyano-2-methylisoquinolinium, and 2-methyl-5-nitro-isoquinolinium cations by 9,10-dihydro-10-methylacridine, and also the reduction of these same three cations as well as the 10-methylacridinium cation by 5,6-dihydro-5-methylphenanthridine, have been investigated in 20% acetonitrile – 80% water, ionic strength 1.0, 25 °C. The reactions of the 2-methyl-5-nitroisoquinolinium cation with both reductants, and also of the 4-cyano-2-methylisoquinolinium cation with 9,10-dihydro-10-methylacridine, display kinetic saturation effects in the pseudo-first-order rate constants as a function of heterocyclic cation concentration. These effects are consistent with the formation of 1:1 association complexes between hydride donor and acceptor prior to the rate-determining step of the reduction. The second-order rate constants for these reactions, and also those for analogous heterocyclic cation reductions by 1,4-dihydronicotinamides, show systematic variations as a function of the hydride donor and acceptor species.


1988 ◽  
Vol 66 (12) ◽  
pp. 3056-3059 ◽  
Author(s):  
Przemysław Sanecki ◽  
Edward Rokaszewski

Hydrolysis of 16 compounds ClO2S—Ar—B—Ar—SO2Cl (B, bridge) in 20% H2O, 80% v/v CH3CO2H, 0.5 mol dm−3 CH3CO2Na at 298.15 K has been investigated by a polarographic method. From plots of the hydrolysis, pseudo-first-order rate constants for two consecutive reactions [Formula: see text] have been computed and the influence of -SO2Cl groups, bridges B, and SO3− groups on the reactivity of -SO2Cl groups has been discussed. The ratio of rate constants k2/k1 ranges from 0.45 to 30, depending on the structure. Log (k1/(2kH)) correlated linearly with [Formula: see text] and log (k2/k1) correlated linearly with ΔpK for the analogous diamine series H2N—Ar—B—Ar—NH2.


1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).


2021 ◽  
Author(s):  
◽  
Asokamali Siriwardena

<p>The reaction of bis-(diaminoethane)nickel(II) chloride, ([Ni(en)2]Cl2 in methanol with formaldehyde and nitroethane in the presence of triethylamine proceeds readily to produce (6, 13-dimethyl-6, 13-dinitro-1, 4, 8, 11-tetraazacyclotetradecane)nickel(II) chloride, [Ni(dini)] - Cl2. Reduction of the nitro groups of this compound by catalytic hydrogenation yields three isomers of the pendant arm macrocyclic complex (6, 13-diamino-6, 13-dimethyl-1, 4, 8, 11-tetraazachyclotetradecane)nickel(II) chloride, designated a-, b- and c-[Ni(diam)]Cl2. These were separated by fractional crystallization. The aisomer was observed to isomerizes slowly in solution to the b- form. A parallel dissociation reaction of the a- isomer was also observed. The demetallation of a- and b- isomers of the diam complex of nickel by reaction with cyanide or concentrated acid at 140 degrees C produces the macrocycle meso-(6, 13-diamino-6, 13-dimethyl-1, 4, 8, 11-tetraazacyclotetra-decane), diam. A variety of hexamine, pentamine and tetramine complexes of diam with nickel(II), copper(II), cobalt(II) and (III), chromium(III), palladium(II), rhodium(III), zinc(II) and cadmium(II) were prepared. Hexamine and tetramine forms of labile metal complexes could be rapidly and reversibly interconverted by altering the pH. The hexamine cobalt(III) cation, [Co(diam)]3+ was by far the most inert of the prepared cobalt(III) complexes, remaining unaffected in hot acidic solutions. In contrast, a single pendant arm of the hexamine [Cr(diam)]3+ cation could be dissociated in acid. (Two possibly triamine complexes of lead were also prepared). These compounds were characterized by elemental analysis, magnetic measurements, electronic, infrared, 1H and 13C nuclear magnetic resonance spectra. The pendant arm protonation constants (log K) of diam and selected complexes of nickel, copper and palladium were calculated from potentiometric titration measurements at 25 degrees C. The log K values for diam at 25 degrees C (I = 0.1 M NaclO4) were 11.15, 9.7, 6.2 and 5.3. Kinetics of the parallel isomerization and dissociation of a-[Ni(dimH2)]4+ in HCl/NaCl solutions were monitored spectrophotometrically at 50 degrees C. The rate of reaction in acidic solutions showed a non-linear dependency on acid concentration. The observed first order rate constant (kobs) for disappearance of a-[Ni(diamH2)]4+ (by isomerization and dissociation) in 2.0 M HCl, 0.1 M NaOH and 2.0 M NaCl were 3.05 x 10-4, 2.0(3) x 10-2 and 5.0 x 10-5 s-1 respectively. The rate of the dissociation component of the reaction of a-[Ni(diamH2)]4+ in 2.0 M HCl at 50 degrees C was 1.82 x 10-7 s-1. Acid bydrolysis kinetics of (Cu[diamH2])(ClO4)4 in hydrochloric acid and perchloric acid at 50 and 70 degrees C were studied spectrophotometrically. The reactions were slow and the observed first order rate constants were to a first approximation independent of the particular acid or its concentration. The observed first order rate constants were 1 x 10-9 and 8 x 10-9 s-1 at 50 and 70 degrees C respectively. Questions about the nature of the reaction being followed have been raised.</p>


1990 ◽  
Vol 68 (2) ◽  
pp. 476-479
Author(s):  
Donald C. Wigfield ◽  
Douglas M. Goltz

The kinetics of the reconstitution reaction of apotyrosinase with copper (II) ions are reported. The reaction is pseudo first order with respect to apoenzyme and the values of these pseudo first order rate constants are reported as a function of copper (II) concentration. Two copper ions bind to apoenzyme, and if the second one is rate limiting, the kinetically relevant copper concentration is the copper originally added minus the amount used in binding the first copper ion to enzyme. This modified copper concentration is linearly related to the magnitude of the pseudo first order rate constant, up to a copper concentration of 1.25 × 10−4 M (10-fold excess), giving a second order rate constant of 7.67 × 102 ± 0.93 × 102 M−1∙s−1.Key words: apotyrosinase, copper, tyrosinase.


1975 ◽  
Vol 28 (5) ◽  
pp. 1133 ◽  
Author(s):  
S Chan ◽  
S Tan

The pseudo first-order rate constants for the mercury(II)-induced aquation of trans-[Co(Hdmg)2(NH3)Cl] (Hdmg = dimethylglyoximate ion) have been measured in aqueous and aqueous ethanol solutions (ethanol- water mole ratio 1 : 5.1) containing various excess amounts of mercury(II)ion at 273.2 K. Association constants of the complex formed with mercury(II) ion and rate constants for dissociation of the activated complex in both solutions have been calculated. The kinetic results are discussed in terms of formation of an activated complex Co-C1-Hg, followed by a simple rate-determining aquation in which HgCl+ acts as the leaving group.


2011 ◽  
Vol 383-390 ◽  
pp. 2945-2950 ◽  
Author(s):  
Jie Zhang ◽  
Shi Long He ◽  
Mei Feng Hou ◽  
Li Ping Wang ◽  
Li Jiang Tian

The kinetics of TBBPA degradation by ozonation in semi-batch reactor was studied. The reaction rate constants of TBBPA with O3 and •OH were measured by means of direct ozone attack and competition kinetics, and the values of which were 6.10 l/(mol•s), 4.8×109 l/(mol•s), respectively. Results of kinetic studies showed that TBBPA degradation by ozonation under the different conditions tested followed the pseudo-first-order. The values of apparent rate constant of TBBPA degradation increased with the increase of ozone dosage and pH, but decreased with the increase of initial TBBPA concentration.


Sign in / Sign up

Export Citation Format

Share Document