Mathematical model for the measurement of pseudo-first-order rate constants in laser flash photolysis experiments

1990 ◽  
Vol 54 (1) ◽  
pp. 1-10 ◽  
Author(s):  
John F. Cassidy ◽  
Conor Long
Author(s):  
M.A. Buntine ◽  
G.J. Gutsche ◽  
W.S. Staker ◽  
M.W. Heaven ◽  
K.D. King ◽  
...  

The technique of laser flash photolysis/laser absorption has been used to obtain absolute removal rate constants for singlet methylene,


1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).


1975 ◽  
Vol 28 (5) ◽  
pp. 1133 ◽  
Author(s):  
S Chan ◽  
S Tan

The pseudo first-order rate constants for the mercury(II)-induced aquation of trans-[Co(Hdmg)2(NH3)Cl] (Hdmg = dimethylglyoximate ion) have been measured in aqueous and aqueous ethanol solutions (ethanol- water mole ratio 1 : 5.1) containing various excess amounts of mercury(II)ion at 273.2 K. Association constants of the complex formed with mercury(II) ion and rate constants for dissociation of the activated complex in both solutions have been calculated. The kinetic results are discussed in terms of formation of an activated complex Co-C1-Hg, followed by a simple rate-determining aquation in which HgCl+ acts as the leaving group.


1999 ◽  
Vol 77 (5-6) ◽  
pp. 1148-1161 ◽  
Author(s):  
Latifa Chahoua ◽  
Alain Vigroux ◽  
Yvonne Chiang ◽  
James C Fishbein

A study of the solvolysis of a series of (N-nitrosomethylamino)arylmethyl esters and azides and the products of nucleophilic trapping of the corresponding N-nitrosiminium ion intermediates in aqueous media, 25°C, ionic strength 1 M is reported. Structure-reactivity data for the forward and reverse reactions have been obtained. In three cases, the rate constants for reactions of the cations with nucleophiles have been measured directly by laser flash photolysis. The data allow a comparison of the degree to which the N-methyl-N-nitroso functionality enhances cation stability from a thermodynamic and kinetic perspective. It has been possible to deduce that the carbon basicity of azide ion is less than 1 kcal/mol greater than that of acetate ion.Key words: nitrosiminium ions, α-acetoxynitrosamines, carbocations, iminium ions, nucleophilicity.


1993 ◽  
Vol 115 (18) ◽  
pp. 8340-8344 ◽  
Author(s):  
J. C. Scaiano ◽  
M. Barra ◽  
M. Krzywinski ◽  
R. Sinta ◽  
G. Calabrese

1990 ◽  
Vol 68 (3) ◽  
pp. 375-382 ◽  
Author(s):  
Robert A. McClelland ◽  
V. M. Kanagasabapathy ◽  
Steen Steenken

Laser flash photolysis in aqueous basic solutions of the ortho acid derivatives 1-(phenyldimethoxymethyl)benzimidazole 2 and 4-bromo-1-(phenyldimethoxymethyl)imidazole 3 results in production of the phenyldimethoxymethyl cation, which has λmax at 260 nm. The cation decays in reactions with water (k = 9.9 × 104 s−1) and hydroxide ion (2.5 × 108 M−1 s−1) to finally yield methyl benzoate, whose formation was monitored at 234 nm. In solutions with pH 10–12, rate constants measured at this wavelength are the same as those obtained at 260 nm, but with pH > 13 and pH < 9, rate constants at 234 nm are smaller. With pH 9–10 and pH 12–13, single exponential kinetics are not observed at 234 nm. This behavior is interpreted in terms of a scheme where at each pH there are two consecutive first-order reactions, cation → phenyldimethoxyhydroxymethane (5) → ester, and the pH dependencies of the rate constants are such that they cross twice over the pH range of this study. The intermediate 5 is the tetrahedral intermediate formed in the methanolysis of methyl benzoate, and the 234-nm buildup at pH > 13 and pH < 9 directly measures its breakdown. At pH > 13 the rate constant is independent of pH with k = 9 × 106 s−1. This represents the rapid expulsion of methoxide from the conjugate base of 5. At pH < 9 the rate constants are proportional to hydroxide ion concentration, with [Formula: see text]. In these solutions the neutral intermediate predominates and the dependence on [OH−] of its rate of conversion to ester is interpreted in terms of breakdown of the anion and protonation of this species by water occurring at comparable rates. Thus, [Formula: see text] represents a situation where there is partial rate-limiting deprotonation of the neutral intermediate by hydroxide. The intermediate of this study bears a close resemblance to the tetrahedral intermediate of the hydrolysis of methyl benzoate. The observation that the anionic forms of such intermediates undergo breakdown at rates similar to those associated with the establishment of proton transfer equilibrium explains why the ester undergoes carbonyl oxygen exchange in base at a rate slower than hydrolysis. Keywords: tetrahedral intermediate, flash photolysis, ester hydrolysis.


1992 ◽  
Vol 70 (6) ◽  
pp. 1784-1794 ◽  
Author(s):  
E. O. Alonso ◽  
L. J. Johnston ◽  
J. C. Scaiano ◽  
V. G. Toscano

The photolysis of several substituted phenyl(naphthyl)methyl triphenylphosphonium chlorides has been examined using a combination of laser flash photolysis experiments and product studies. Both carbocation and radical intermediates have been characterized in the transient experiments, with the relative yields depending strongly on the solvent. For example, in alcohols, acetonitrile, or aqueous solvents cation formation predominates while acetonitrile/dioxane mixtures (5–10%) are required for the observation of radicals. Quantum yields for cation formation vary from 0.79 in methanol to 0.093 in 1:4 acetonitrile/dioxane, as measured by product studies and transient experiments, respectively. The addition of perchlorate salts leads to dramatic enhancements in the cation lifetimes; the effects are particularly pronounced for acetonitrile/dioxane mixtures where the cation yields also increase by factors of 3–4. In this case the effects are attributed primarily to replacement of chloride by perchlorate in the initial ion pairs. The combined data from both solvent and perchlorate salt effects on the cation lifetimes and yields suggest that the excited state of the phosphonium salt cleaves homolytically, followed by electron transfer within the initial radical/triphenylphosphine radical cation pair to generate carbocation, as opposed to direct heterolytic cleavage. The cation yields also indicate that back reaction to regenerate starting material, as well as product formation within the initial geminate cage, occur in some solvents. The effects of solvent and added perchlorate salts on the rate constants for reaction with nucleophiles have been examined. For example, rate constants that vary by an order of magnitude have been measured for quenching by azide ion in various aqueous acetonitrile and trifluoroethanol mixtures.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
M. Niyaz Khan ◽  
Yoke-Leng Sim ◽  
Azhar Ariffin

The values of pseudo-first-order rate constants (kobs) for alkaline hydrolysis of1, obtained at 1.0 mM NaOH and withinCmEnT(total concentration ofCmEn) range of 3.0–5.0 mM forC12E23and 10–20 mM forC18E20, fail to obey pseudophase micellar (PM) model. The values of the fraction of near irreversibleCmEnmicellar trapped1molecules (FIT1) vary in the range ~0–0.75 forC12E23and ~0–0.83 forC18E20under such conditions. The values ofFIT1become 1.0 at ≥10 mMC12E23and 50 mMC18E20. Kinetic analysis of the observed data at ≥10 mMC12E23shows near irreversible micellar entrapment of1molecules under such conditions.


2011 ◽  
Vol 11 (1) ◽  
pp. 129-134 ◽  
Author(s):  
A. Dulov ◽  
N. Dulova ◽  
Y. Veressinina ◽  
M. Trapido

The degradation of propoxycarbazone-sodium, an active component of commercial herbicide, in aqueous solution with ozone, UV photolysis and advanced oxidation processes: O3/UV, O3/UV/H2O2, H2O2/UV, and the Fenton process was studied. All these methods of degradation proved feasible. The kinetics of propoxycarbazone-sodium degradation in water followed the pseudo-first order equation for all studied processes except the Fenton treatment. The application of schemes with ozone demonstrated low pseudo-first order rate constants within the range of 10−4 s−1. Addition of UV radiation to the processes improved the removal of propoxycarbazone-sodium and increased the pseudo-first order rate constants to 10−3 s−1. The Fenton process was the most efficient and resulted in 5 and 60 s of half-life and 90% conversion time of propoxycarbazone-sodium, respectively, at 14 mM H2O2 concentration. UV treatment and the Fenton process may be recommended for practical application in decontamination of water or wastewater.


Sign in / Sign up

Export Citation Format

Share Document