The Impact of Oil Aromaticity on CO2, Flooding

1985 ◽  
Vol 25 (06) ◽  
pp. 865-874 ◽  
Author(s):  
T.G. Monger

Abstract This paper investigates the role of oil aromaticity in miscability development and in the deposition of heavy hydrocarbons during CO2, flooding. The results of phase equilibrium measurements, compositional studies, sandpack displacements, and consolidated corefloods are presented. Reservoir oil from the Brookhaven field and presented. Reservoir oil from the Brookhaven field and synthetic oils that model natural oil phase behavior are examined. Phase compositional analyses Of CO2/synthetic-oil mixtures in static PVT tests demonstrate that increased oil aromaticity correlates with improved hydrocarbon extraction into a CO2-rich phase. The results of tertiary corefloods performed with the synthetic oils show that CO2-flood oil displacement efficiency is also improved for the oil with higher aromatic content. These oil aromaticity influences are favorable. Reservoir oil experiments show that a significant deposition of aromatic hydrocarbon material occurs when CO2, contacts highly asphaltic crude. Solid-phase formation was observed in phase equilibrium and displacement studies and led to severe plugging during linear flow through Berea cores. It is unclear how this solid phase will affect oil recovery on a reservoir scale. Introduction Several reports suggest that oil aromaticity affects the CO2, displacement process of reservoir oil. Henry and Metcalfe noted the absence of multiple-liquid phase generation in displacement tests performed with a crude oil of low aromatic content. Holm and Josendal showed that when a highly paraffinic oil was enriched with aromatics, the slim-tube minimum miscibility pressure (MMP) decreased and oil recovery improved. Qualitative differences in the phase behavior of two crudes with contrasting aromatic contents prompted the suggestion by Monger and Khakoo that increased oil aromaticity correlates with improved hydrocarbon extraction into a CO2-rich phase. Clementz discussed how the adsorption of petroleum heavy ends, like the condensed aromatic ring structures found in asphaltenes, can alter rock properties. Laboratory studies have shown that improved oil properties. Laboratory studies have shown that improved oil recoveries in tertiary CO2 displacements benefited from changes in wetting behavior apparently, induced by asphaltene adsorption. Tuttle noted that CO2, appears to reduce asphaltene solubility and can cause rigid film formation. In these respects, oil aromaticity may also account for phase-behavior/oil-recovery synergism. Asphaltene deposition, though not a problem during primary and secondary recovery operations, was primary and secondary recovery operations, was reported in the Little Creek CO2 -injection pilot in Mississippi. Wettability alteration from asphaltene precipitation appears to have explained the results of low residual oil at high water-alternating-gas ratios in the Little Knife CO2, flood minitest in North Dakota. This paper provides detailed laboratory data from phase equilibrium measurements, compositional studies. sandpack displacements, and consolidated corefloods that illuminate the role of aromatics in miscibility development and in solid-phase formation during CO2 - flooding. The results for synthetic oils that model crude-oil behavior suggest that CO2-flood performance will benefit from increased oil aromaticity. The interpretation of reservoir oil results is more difficult. The precipitation of highly aromatic hydrocarbon material is observed when CO2, contacts Brookhaven crude. One purpose of this paper is to examine the variables that influence asphaltene precipitation. Near the wellbore, solid-phase formation might precipitation. Near the wellbore, solid-phase formation might reduce injectivity or impair production rates. Perhaps in other regions of the reservoir, altered permeability and/or wettability caused by solid-phase deposition might improve the ability of CO2, to contact oil. Additional work is needed to determine which potential benefits of oil aromaticity are significant on the reservoir scale. Advances in computer-implemented equations of state are making the prediction of CO2,/hydrocarbon phase behavior easier and more reliable. When an equation of state with CO2/reservoir-oil mixtures is used, an important consideration is the characterization of the heavy hydrocarbon components. One characterization method that appears to match the experimental data accurately in the critical point region for rich-gas/reservoir-oil mixtures is based on assigning separate paraffinic, aromatic, and naphthenic cuts. An additional aim of this study is to provide experimental data in assisting similar modeling provide experimental data in assisting similar modeling efforts for CO2/reservoir-oil mixtures. Experimental phase equilibrium data for mixtures containing CO2, and phase equilibrium data for mixtures containing CO2, and heavy hydrocarbons, particularly aromatics, are scarce. The behavior of multicomponent CO2,/hydrocarbon systems is not readily deduced from the phase equilibria of binary or ternary systems. Materials and Methods Phase Equilibrium Studies. A schematic diagram of the Phase Equilibrium Studies. A schematic diagram of the apparatus used in the phase-behavior experiments appears in Fig. 1. A detailed description of the equipment, procedures, chemicals, and analytical methods used is given procedures, chemicals, and analytical methods used is given in Ref. 10. SPEJ P. 865

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1211
Author(s):  
Maja Vončina ◽  
Aleš Nagode ◽  
Jožef Medved ◽  
Irena Paulin ◽  
Borut Žužek ◽  
...  

When extruding the casted rods from EN AW 2011 aluminium alloys, not only their homogenized structure, but also their extrudable properties were significantly influenced by the hardness of the alloy. In this study, the object of investigations was the EN AW 2011 aluminium alloy, and the effect of homogenisation time on hardness was investigated. First, homogenisation was carried out at 520 °C for different times, imitating industrial conditions. After homogenisation, the samples were analysed by hardness measurements and further characterised by microscopy and image analysis to verify the influence of homogenisation on the resulting microstructural constituents. In addition, non-equilibrium solidification was simulated using the program Thermo-Calc and phase formation during solidification was investigated. The homogenisation process enabled more rounded shape of the Al2Cu eutectic phase, equilibrium formation of the phases, and the precipitation in the matrix, leading to a significant increase in the hardness of the EN AW 2011 aluminium alloy. The experimental data revealed a suitable homogenisation time of 4–6 h at a temperature of 520 °C, enabling optimal extrusion properties.


1981 ◽  
Vol 21 (04) ◽  
pp. 480-492 ◽  
Author(s):  
F.M. Orr ◽  
A.D. Yu ◽  
C.L. Lien

Abstract Phase behavior of CO2/Crude-oil mixtures which exhibit liquid/liquid (L/L) and liquid/ liquid/vapor (L/L/V) equilibria is examined. Results of single-contact phase behavior experiments for CO2/separator-oil mixtures are reported. Experimental results are interpreted using pseudoternary phase diagrams based on a review of phase behavior data for binary and ternary mixtures of CO2 with alkanes. Implications for the displacement process of L/L/V phase behavior are examined using a one-dimensional finite difference simulator. Results of the analysis suggest that L/L and L/L/V equilibria will occur for CO2/crude-oil mixtures at temperatures below about 120 degrees F (49 degrees C) and that development of miscibility occurs by extraction of hydrocarbons from the oil into a CO2-rich liquid phase in such systems. Introduction The efficiency of a displacement of oil by CO2 depends on a variety of factors, including phase behavior of CO2/crude-oil mixtures generated during the displacement, densities and viscosities of the phases present, relative permeabilities to individual phases, and a host of additional complications such as dispersion, viscous fingering, reservoir heterogeneities, and layering. It generally is acknowledged that phase behavior and attendant compositional effects on fluid properties strongly influence local displacement efficiency, though it also is clear that on a reservoir scale, poor vertical and areal sweep efficiency (caused by the low viscosity of the displacing CO2) may negate the favorable effects of phase behavior.Interpretation of the effects of phase behavior on displacement efficiency is made difficult by the complexity of the behavior of CO2/crude-oil mixtures. The standard interpretation of CO2 flooding phase behaviour, given first by Rathmell et al. is that CO2 flooding behaves much like a vaporizing gas drive, as described originally by Hutchinson and Braun. During a flood, vaporphase CO2 mixes with oil in place and extracts light and intermediate hydrocarbons. After multiple contacts, the CO2-rich phase vaporizes enough hydrocarbons to develop a composition that can displace oil efficiently, if not miscibly. The picture presented by Rathmell et al. appears to be consistent with phase behavior observed for CO2/ crudeoil mixtures as long as the reservoir temperature is high enough. Table 1 summarizes data reported for CO2/crude-oil mixtures. Of the 10 systems studied, all those at temperatures above 120 degrees F (50 degrees C) show only L/V equilibria while those below 120 degrees F exhibit L/L/V separations (Stalkup also reports two phase diagrams that are qualitatively similar to the other low-temperature diagrams but does not give temperatures). Thus, at temperatures not too far above the critical temperature of CO2 [88 degrees F (31 degrees C)], mixtures of CO2 and crude oil exhibit multiple liquid phases, and at some pressures L/L/V equilibria are observed. It has not been established whether Rathmell et al.'s interpretation of the process mechanism can be extended to cover the more complex phase behavior of low-temperature CO2/crude-oil mixtures. In a recent paper, Metcalfe and Yarborough argued critical temperature CO2 floods behave more like condensing gas drives, whereas Kamath et al. concluded that an increase in the solubility of liquid-phase CO2 in crude oil at temperatures near the critical temperature of CO2 should cause more efficient displacements of oil by CO2. SPEJ P. 480^


2005 ◽  
Vol 127 (4) ◽  
pp. 310-317 ◽  
Author(s):  
Shaojun Wang ◽  
Faruk Civan

Asphaltene precipitation and deposition during primary oil recovery and resulting reservoir formation damage are described by a phenomenological mathematical model. This model is applied using experimental data from laboratory core flow tests. The effect of asphaltene deposition on porosity, permeability, and the productivity of vertical wells in asphaltenic-oil reservoirs are investigated by simulation.


2020 ◽  
Vol 17 (6) ◽  
pp. 1683-1698 ◽  
Author(s):  
Xiao-Fei Sun ◽  
Zhao-Yao Song ◽  
Lin-Feng Cai ◽  
Yan-Yu Zhang ◽  
Peng Li

AbstractA novel experimental procedure was proposed to investigate the phase behavior of a solvent mixture (SM) (64 mol% CH4, 8 mol% CO2, and 28 mol% C3H8) with heavy oil. Then, a theoretical methodology was employed to estimate the phase behavior of the heavy oil–solvent mixture (HO–SM) systems with various mole fractions of SM. The experimental results show that as the mole fraction of SM increases, the saturation pressures and swelling factors of the HO–SM systems considerably increase, and the viscosities and densities of the HO–SM systems decrease. The heavy oil is upgraded in situ via asphaltene precipitation and SM dissolution. Therefore, the solvent-enriched oil phase at the top layer of reservoirs can easily be produced from the reservoir. The aforementioned results indicate that the SM has promising application potential for enhanced heavy oil recovery via solvent-based processes. The theoretical methodology can accurately predict the saturation pressures, swelling factors, and densities of HO–SM systems with various mole fractions of SM, with average error percentages of 1.77% for saturation pressures, 0.07% for swelling factors, and 0.07% for densities.


Author(s):  
Saba Mahmoudvand ◽  
Behnam Shahsavani ◽  
Rafat Parsaei ◽  
Mohammad Reza Malayeri

The depletion of oil reservoirs and increased global oil demand have given impetus to employ various secondary and tertiary oil recovery methods. Gas injection is widely used in both secondary and tertiary modes, though the major problem associated with this process is the precipitation and deposition of asphaltene, particularly at near-wellbore conditions. In-depth knowledge of asphaltene phase behavior is therefore essential for the prediction of asphaltene precipitation. Previous studies reported the impact of gas injection on asphaltene phase behavior, but the knowledge of precipitation of asphaltene as a function of different mole fractions of injected gas is also imperative. In this study, the thermodynamic model of PC-SAFT EoS is used to discern the phase equilibrium of asphaltene by analyzing the asphaltene drop-out curve during gas injection. Asphaltene drop-out curves of two different live oil samples are analyzed by injecting CO2, CH4, and N2 gases at different mole percentages and temperatures. The results revealed that PC-SAFT EoS can serve as a reliable tool for estimating bubble pressure and asphaltene onset pressure for a wide range of temperatures, pressures, and compositions. The simulation results for the injection of CO2, CH4, and N2 also showed that CO2 gas gives minimum asphaltene precipitation. It reduces the size of the drop-out curve or moves it toward higher pressures. CH4 and N2 expand the drop-out curve by raising the upper onset point. CH4 increases the maximum point of the drop-out curve for two types of oil studied (A and B) at two different temperatures. N2 raises the maximum point of oil type “A” by approximately 57% at 395 K, while it has no effect on the maximum point of oil type “B”. In addition, reducing the temperature resulted in either decrease or increase of asphaltene solubility, demonstrating that the impact of temperature on asphaltene precipitation is closely related to the composition of the crude.


Author(s):  
Moilton Franco Junior ◽  
Nattacia Rocha ◽  
Warley Pereira

In this work, Peng-Robinson EOS (equation of state) was chosen to represent liquid phase behavior. Then, regarding the three acids, Lauric, Palmitic and Stearic, bulk modulus coefficients were calculated in three values of pressures (0.1, 1.0 and 2.0 GPa) and a range of temperature of 350-450 K. According to the literature, results for carbon dioxide, bulk modulus in the liquid phase is in the same line for the one in the solid phase considering the temperature dimension. Based on it, in this work, the bulk modulus was estimated at three temperatures for three acids in solid-phase by extrapolating the results in the liquid phase. Despite there are no experimental data available in the literature, these results seem to be consistent with the thermodynamic constraints, and useful discussions were provided.


1963 ◽  
Vol 41 (2) ◽  
pp. 527-530 ◽  
Author(s):  
J. Gaunt ◽  
I. J. Bastien ◽  
M. Adelman

Phase equilibrium studies were carried out on the system UO2(NO3)2−HNO3−H2O between the temperatures of −10 °C and +49.1 °C over a wide concentration range of both UO2(NO3)2 and HNO3. No phase separation occurred above 49.1 °C for the concentrations studied. The three hydrates of UO2(NO3)2 were identified in the solid phase, and a new complex of UO2(NO3)2, possibly UO2(NO3)2.3HNO3, was separated as the solid phase at higher nitric acid concentrations.


Sign in / Sign up

Export Citation Format

Share Document