Water-oil Relative Permeability and CO2 Injection Process at Full Reservoir Conditions in an H2S Oil Bearing Carbonate Reservoir

2015 ◽  
Author(s):  
Nidhal Alawi ◽  
Zubair Kalam ◽  
Hani Al Sahn ◽  
Yatindra Bhushan ◽  
Tariq Al-Shabibi
Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 115
Author(s):  
Le Quynh Hoa ◽  
Ralph Bäßler ◽  
Dirk Bettge ◽  
Enrico Buggisch ◽  
Bernadette Nicole Schiller ◽  
...  

For reliability and safety issues of injection wells, corrosion resistance of materials used needs to be determined. Herein, representative low-cost materials, including carbon steel X70/1.8977 and low alloyed steel 1.7225, were embedded in mortar to mimic the realistic casing-mortar interface. Two types of cement were investigated: (1) Dyckerhoff Variodur commercial Portland cement, representing a highly acidic resistant cement and (2) Wollastonite, which can react with CO2 and become stable under a CO2 stream due to the carbonation process. Exposure tests were performed under 10 MPa and at 333 K in artificial aquifer fluid for up to 20 weeks, revealing crevice corrosion and uniform corrosion instead of expected pitting corrosion. To clarify the role of cement, simulated pore water was made by dispersing cement powder in aquifer fluid and used as a solution to expose steels. Surface analysis, accompanied by element mapping on exposed specimens and their cross-sections, was carried out to trace the chloride intrusion and corrosion process that followed.


2021 ◽  
Author(s):  
Abderraouf Chemmakh ◽  
Ahmed Merzoug ◽  
Habib Ouadi ◽  
Abdelhak Ladmia ◽  
Vamegh Rasouli

Abstract One of the most critical parameters of the CO2 injection (for EOR purposes) is the Minimum Miscibility Pressure MMP. The determination of this parameter is crucial for the success of the operation. Different experimental, analytical, and statistical technics are used to predict the MMP. Nevertheless, experimental technics are costly and tedious, while correlations are used for specific reservoir conditions. Based on that, the purpose of this paper is to build machine learning models aiming to predict the MMP efficiently and in broad-based reservoir conditions. Two ML models are proposed for both pure CO2 and non-pure CO2 injection. An important amount of data collected from literature is used in this work. The ANN and SVR-GA models have shown enhanced performance comparing to existing correlations in literature for both the pure and non-pure models, with a coefficient of R2 0.98, 0.93 and 0.96, 0.93 respectively, which confirms that the proposed models are reliable and ready to use.


2021 ◽  
Author(s):  
Nicolas Gaillard ◽  
Matthieu Olivaud ◽  
Alain Zaitoun ◽  
Mahmoud Ould-Metidji ◽  
Guillaume Dupuis ◽  
...  

Abstract Polymer flooding is one of the most mature EOR technology applied successfully in a broad range of reservoir conditions. The last developments made in polymer chemistries allowed pushing the boundaries of applicability towards higher temperature and salinity carbonate reservoirs. Specifically designed sulfonated acrylamide-based copolymers (SPAM) have been proven to be stable for more than one year at 120°C and are the best candidates to comply with Middle East carbonate reservoir conditions. Numerous studies have shown good injectivity and propagation properties of SPAM in carbonate cores with permeabilities ranging from 70 to 150 mD in presence of oil. This study aims at providing new insights on the propagation of SPAM in carbonate reservoir cores having permeabilities ranging between 10 and 40 mD. Polymer screening was performed in the conditions of ADNOC onshore carbonate reservoir using a 260 g/L TDS synthetic formation brine together with oil and core material from the reservoir. All the experiments were performed at residual oil saturation (Sor). The experimental approach aimed at reproducing the transport of the polymer entering the reservoir from the sand face up to a certain depth. Three reservoir coreflood experiments were performed in series at increasing temperatures and decreasing rates to mimic the progression of the polymer in the reservoir with a radial velocity profile. A polymer solution at 2000 ppm was injected in the first core at 100 mL/h and 40°C. Effluents were collected and injected in the second core at 20 mL/h and 70°C. Effluents were collected again and injected in the third core at 4 mL/h and 120°C. A further innovative approach using reservoir minicores (6 mm length disks) was also implemented to screen the impact of different parameters such as Sor, molecular weight and prefiltration step on the injectivity of the polymer solutions. According to minicores data, shearing of the polymer should help to ensure good propagation and avoid pressure build-up at the core inlet. This result was confirmed through an injection in a larger core at Sor and at 120°C. When comparing the injection of sheared and unsheared polymer at the same concentration, core inlet impairment was suppressed with the sheared polymer and the same range of mobility reduction (Rm) was achieved in the internal section of the core although viscosity was lower for the sheared polymer. Such result indicates that shearing is an efficient way to improve injectivity while maximizing the mobility reduction by suppressing the loss of product by filtration/retention at the core inlet. This paper gives new insights concerning SPAM rheology in low permeability carbonate cores. Additionally, it provides an innovative and easier approach for screening polymer solutions to anticipate their propagation in more advanced coreflooding experiments.


2021 ◽  
Author(s):  
Genjiu Wang ◽  
Dandan Hu ◽  
Qianyao Li

Abstract It is generally believed that Cretaceous bioclastic limestone in Mesopotamia basin in central and southern Iraq is a typical porous reservoir with weak fracture development. Therefore, previous studies on the fracture of this kind of reservoir are rare. As a common seepage channel in carbonate rock, fracture has an important influence on single well productivity and waterflooding development of carbonate reservoir. Based on seismic, core and production data, this study analyzes the development characteristics of fractures from various aspects, and discusses the influence of fractures on water injection development of reservoirs. Through special processing of seismic data, it is found that there are a lot of micro fractures in Cretaceous bioclastic limestone reservoir. Most of these micro fractures are filled fractures without conductivity under the original reservoir conditions. However, with the further development of the reservoir, the reservoir pressure, oil-water movement, water injection and other conditions have changed, resulting in the original reservoir conditions of micro fractures with conductivity. The water cut of many production wells in the high part of reservoir rises sharply. In order to describe the three-dimensional spatial distribution of fractures, the core data is used to verify the seismic fracture distribution data volume. After the verification effect is satisfied, the three-dimensional fracture data volume is transformed into the geological model to establish the permeability field including fracture characteristics. The results of numerical simulation show that water mainly flows into the reservoir through high angle micro fractures. Fractures are identified by seismic and fracture model is established to effectively recognize the influence of micro fractures on water injection development in reservoir development process, which provides important guidance for oilfield development of Cretaceous bioclastic limestone reservoir in the central and southern Iraq fields.


Sign in / Sign up

Export Citation Format

Share Document