Rigless Zonal Isolation in High-Permeability and Low-Pressure Sandstone Formations Using an Organically Crosslinked Polymer Sealant: Successful Field Application

Author(s):  
Baraa Alshammari ◽  
Nitin Rane ◽  
Sultan Al Harbi ◽  
Safaa Mohammad ◽  
Abdullah Al-Kinderi ◽  
...  

2020 ◽  
Author(s):  
Nasser Al-Azmi ◽  
Salem Al-Sabea ◽  
Abu-Eida Abdullah ◽  
Milan Patra ◽  
Nakul Khandelwal ◽  
...  


2018 ◽  
Author(s):  
Ankesh Nagar ◽  
Gaurav Dangwal ◽  
Nimish Pandey ◽  
Akanksha Jain ◽  
Arunabh Parasher ◽  
...  


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1674
Author(s):  
Dongyoung Kim ◽  
Iqubal Hossain ◽  
Yeonho Kim ◽  
Ook Choi ◽  
Tae-Hyun Kim

In this study, precursor molecules based on PEG/PPG and polydimethylsiloxane (PDMS), both widely used rubbery polymers, were copolymerized with bulky adamantane into copolymer membranes. Ring-opening metathesis polymerization (ROMP) was employed during the polymerization process to create a structure with both ends crosslinked. The precursor molecules and corresponding polymer membranes were characterized using various analytical methods. The polymer membranes were fabricated using different compositions of PDMS and adamantane, to determine how the network structure affected their gas separation performance. PEG/PPG, in which CO2 is highly soluble, was copolymerized with PDMS, which has high permeability, and adamantane, which controlled the crosslinking density with a rigid and bulky structure. It was confirmed that the resulting crosslinked polymer membranes exhibited high solubility and diffusivity for CO2. Further, their crosslinked structure using ROMP technique made it possible to form good films. The membranes fabricated in the present study exhibited excellent performance, i.e., CO2 permeability of up to 514.5 Barrer and CO2/N2 selectivity of 50.9.



2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yujia Chen ◽  
Ao Li ◽  
Dingding Yang ◽  
Tianyu Liu ◽  
Xiaowei Li ◽  
...  

In order to ensure the intactness of pressure-measuring boreholes and the accuracy of gas pressure determination, pregrouting treatment with polymer materials is frequently applied to bedding drilling in coal mines. However, the existing polyurethane materials are of high viscosity, low permeability, and poor safety, bringing great difficulties to their field promotion and application. In view of this problem, after optimization and experiments, polylactide polyol/polyether polyol 4110/isocyanate was determined as the target system. Bio-based benzoxazine (Boz-F), red phosphorus, and melamine with a mass ratio of 2 : 1 : 2 were used as the flame retardant, which then underwent mechanical modification by hollow glass bubbles. Finally, the pregrouting material with low viscosity and high permeability was compounded, and its interaction with coal was experimentally studied. The results show that compared with traditional polyurethane, the new material increases the effective consolidation distance in the coal seam by 40% on average. Its permeation radius is also larger than the calculated radius of the plastic softening zone of a borehole. In addition, the strengths of coal-new material consolidated products with different ratios fully surpass those of coal-polyurethane material consolidated products. The enhancement of compressive strength and bending strength is up to 153% and 161%, respectively. The field application indicates that after pregrouting treatment of boreholes in the coal seam with the new material, the borehole formation rate reaches 100%. Therefore, the new material is safe and practical for gas pressure measurement through bedding drilling on site.



2011 ◽  
Author(s):  
Jiandong Wang ◽  
Lineng Yang ◽  
Shengyin Song ◽  
Xiaoming Yi ◽  
Dongfeng Li ◽  
...  


Author(s):  
Mohammad Yunus Khan ◽  
Ajay Mandal

AbstractAvailability of gases at the field level makes attractive to water-alternating-gas (WAG) process for low viscosity and light oils carbonate reservoir. However, impact of reservoir heterogeneity on WAG performance is crucial before field application. In general, ramp carbonates have heterogeneity due to variation of permeability and porosity. However, WAG performance significantly affected by permeability variations. This article investigates merits and demerits of WAG displacement due to permeability heterogeneities such as permeability anisotropy, high permeability streaks (HKS), matrix permeability, dolomite and thin dense stylolite layers. High-resolution compositional simulations with tuned equation of state (EoS) were carried out using 2D and 3D sector models. The study focuses on WAG performance in terms of oil recovery, vertical sweep, solvent utilization, gas oil ratio (GOR), water cut (WCT), WAG response time, gravity override, hysteresis, un-contacted oil saturation and economics. The results of simulation show that the heterogeneous reservoir provides initially faster WAG response, lower expected ultimate recovery (EUR), faster gas breakthrough, higher GOR and WCT production compared to homogeneous reservoir. The gas gravity override at smaller wells spacing is less in homogeneous reservoir as compared to heterogeneous reservoir, but it is reverse in case of larger well spacing. In heterogeneous reservoir, the HKS shows significant gas override resulting in poor vertical sweep due to capillary holding, and the high permeability dolomite layer shows early water breakthrough. This reservoir has higher solvent utilization in initial stage, and then, it becomes nearly equal to homogeneous reservoir. Simulation in both reservoirs overestimates incremental recovery of 2–3% OOIP at one pore volume injection because of not involving un-contacted oil saturation as predicted in core flood. The findings of this study will help to understand WAG performance and design in highly heterogeneous reservoirs for field applications. Graphical abstract





2011 ◽  
Author(s):  
Jiandong Wang ◽  
Lineng Yang ◽  
Shengyin Song ◽  
Xiaoming Yi ◽  
Dongfeng Li ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document