Improved Multiple-Mixing-Cell Method for Accelerating Minimum Miscibility Pressure Calculations

SPE Journal ◽  
2019 ◽  
Vol 25 (04) ◽  
pp. 1681-1696 ◽  
Author(s):  
Haining Zhao ◽  
Zhengbao Fang

Summary An improved algorithm for accelerating minimum miscibility pressure (MMP) computation using the multiple-mixing-cell (MMC) methods is presented. The MMC method is widely used to accurately calculate the MMP. In this study, we proposed an acceleration algorithm toward original MMC method to directly locate the shortest key tie-line (TL) after a certain amount of contacts through the adjustment of the gas/oil mixing ratio during the calculation process. The algorithm contains the following key components: (1) mixing cell cutoff strategy to avoid unnecessary flash calculations; (2) gas/oil mixing ratio adjustment to prevent lost information on the shortest key TL during the cell cutoff process; (3) a search algorithm for pressure to improve the next step pressure estimate; (4) the fast and reliable two-phase flash implementation by combining full Newton method with recently proposed iteration variables and conventional successive substitution method. The improved MMC model is shown to be faster than the original MMC method in computing MMP.

2014 ◽  
Vol 17 (03) ◽  
pp. 396-403 ◽  
Author(s):  
Tadesse Weldu Teklu ◽  
Najeeb Alharthy ◽  
Hossein Kazemi ◽  
Xiaolong Yin ◽  
Ramona M. Graves ◽  
...  

Summary Numerous studies indicate that the pressure/volume/temperature (PVT) phase behavior of fluids in large pores (designated “unconfined” space) deviates from phase behavior in nanopores (designated “confined” space). The deviation in confined space has been attributed to the increase in capillary force, electrostatic interactions, van der Waals forces, and fluid structural changes. In this paper, conventional vapor/liquid equilibrium (VLE) calculations are modified to account for the capillary pressure and the critical-pressure and -temperature shifts in nanopores. The modified VLE is used to study the phase behavior of reservoir fluids in unconventional reservoirs. The multiple-mixing-cell (MMC) algorithm and the modified VLE procedure were used to determine the minimal miscibility pressure (MMP) of a synthetic oil and Bakken oil with carbon dioxide (CO2) and mixtures of CO2 and methane gas. We show that the bubblepoint pressure, gas/oil interfacial tension (IFT), and MMP are decreased with confinement (nanopores), whereas the upper dewpoint pressure increases and the lower dewpoint pressure decreases.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
FuLin Yang ◽  
Peng Yu ◽  
Xue Zhang

A simple and robust algorithm has been developed to calculate the minimum miscibility pressure (MMP), which is considered one of the crucial and essential design parameters of miscible gas injection projects for enhanced oil recovery (EOR). This algorithm is to track all tie-line lengths through the cell-cell calculation by the minimum distance function for the prediction of MMP. The MMP is the pressure at which any one of all key tie-line lengths becomes zero. To verify the accuracy of the revised MMC algorithm for determining MMP, several examples taken from the published literature have been examined. The calculation results of our revised MMC algorithm show excellent agreement with those estimated by MOC, MMC, and slim-tube experiments, which are found to be reliable within acceptable accuracy (4.53%-0.50%).


SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 743-750 ◽  
Author(s):  
Kaveh Ahmadi ◽  
Russell T. Johns ◽  
Kristian Mogensen ◽  
Rashed Noman

Summary An accurate minimum miscibility pressure (MMP) is one of the key factors in miscible-gasflood design. There is a variety of experimental and analytical methods to determine the MMP, but the most-reliable methods are slimtube experiments, 1D slimtube simulations, mixing-cell models, and the fast key-tie-line approach using the method of characteristics (MOC). Direct comparisons of all these methods generally agree well, but there are cases in which they do not. No explanation has yet been given for these anomalies, although the MMP is critically important to recovery. The focus of this paper is to explain when current MOC results assuming that shocks exist from one key tie line to the next may not be reliable, and how to identify when this is the case. We demonstrate, using fluid characterizations from Middle East oils, that the MMPs using this MOC method can be more than 6,500 psia greater than those calculated using a recently developed mixing-cell method. The observed differences in the MMP increase substantially as the API gravity of the oil decreases, likely the result of the onset of L1-L2-V behavior. We show that the key tie lines determined using this MOC method do not control miscibility for such cases. We explain the reasons for these differences using simplified pseudoternary models and show how to determine when an error exists. We also offer a way to correct the MMP predictions using the MOC for these complex gas/oil displacements without solving for the complete compositional path.


2018 ◽  
Vol 24 (4) ◽  
pp. 387-397 ◽  
Author(s):  
Yi Liu ◽  
Li Chen ◽  
Jun Zhou ◽  
Zongcheng Yan

Ionic liquids-based aqueous two-phase extraction (ILs-ATPE) offers an alternative approach to the extraction of tetracycline (TC) through their partitioning between two phases. Single-stage and multi-stage strategies have been evaluated and compared for the purification of TC using ATPE composed of 1-butyl-3-methylimidazolium halide ([Bmim]X(X=Cl,Br)) and K2HPO4. The influence factors on single-stage extraction behavior of TC were optimized systematically, including the pH value, tie line length, and volume ratio. The optimal extraction efficiency of TC could reach above 95% when the volume ratio is higher than 1.5 and the tie line length is 30.52%. The multi-stage ATPE was also investigated by simulating a three-stage crosscurrent operation in test tubes. According to the TC isotherm curve and respective McCabe?Thiele diagrams, a predicted optimized scheme of the countercurrent multi-stage ATPE was determined. TC can be purified in the IL-rich top phase with a final extraction efficiency of 99% and a final TC concentration of 0.25 mg/mL, if a three- -stage [Bmim]Cl-K2HPO4 ATPE with volume ratio of 0.5 and tie line length of 30.52% was employed. Thus, the multi-stage extraction with small volume ratio is necessary to achieve a higher recovery yield, resulting in the reduction of the IL consumption.


SPE Journal ◽  
2015 ◽  
Vol 20 (03) ◽  
pp. 565-578 ◽  
Author(s):  
Mohsen Rezaveisi ◽  
Russell T. Johns ◽  
Kamy Sepehrnoori

Summary Standard equation-of-state-based phase equilibrium modeling in reservoir simulators involves computationally intensive and time-consuming iterative calculations for stability analysis and flash calculations. Therefore, speeding up stability analysis and flash calculations and improving robustness of the calculations are of utmost importance in compositional reservoir simulation. Prior knowledge of the tie-lines traversed by the solution of a gas-injection problem translates into valuable information with significant implications for speed and robustness of reservoir simulators. The solution of actual-gas-injection processes follows a very complex route because of dispersion, pressure variations, and multidimensional flow. The multiple-mixing-cell (MMC) method, originally developed to calculate minimum miscibility pressure of a gas-injection process, accounts for various levels of mixing of the injected gas and initial oil. This observation suggests that the MMC tie-lines developed upon repeated contacts may represent a significant fraction of the actual simulation tie-lines encountered. We investigate this idea and use three tie-line-based K-value-simulation methods for application of MMC tie-lines in reservoir simulation. In two of the tie-line-based K-value-simulation methods, we examine tabulation and interpolation of MMC tie-lines in a framework similar to the compositional-space adaptive-tabulation (CSAT) method. In the third method, we perform K-value simulations based on inverse-distance interpolation of K-values from MMC tie-lines. We demonstrate that for the displacements examined, the MMC tie-lines are sufficiently close to the actual simulation tie-lines and provide excellent coverage of the simulation compositional route. The MMC-based methods are then compared with the computational time by use of other methods of phase-equilibrium calculations, including a modified application of CSAT (an adaptive tie-line-based K-value simulation), a method using only heuristic techniques, and the standard method in an implicit-pressure/explicit-concentration-type reservoir simulator. The results show that tabulation and interpolation of MMC tie-lines significantly improve phase equilibrium and computational time compared with the standard approach, with acceptable accuracy. The results also show that computational performance of the MMC-based methods with only prior tie-line tables is very close to that of CSAT, which requires flash calculations during simulation. The K-value simulations by use of MMC-based tie-line-interpolation methods improve the total computational time up to 51% in the cases studied, with acceptable accuracy. The results suggest that MMC tie-lines represent a significant fraction of the actual tie-lines during simulation and can be used to significantly improve speed and robustness of phase-equilibrium calculations in reservoir simulators.


2018 ◽  
Vol 187 ◽  
pp. 377-390 ◽  
Author(s):  
Rajab Omar ◽  
Buddhika Hewakandamby ◽  
Abdelwahid Azzi ◽  
Barry Azzopardi

Sign in / Sign up

Export Citation Format

Share Document