Application of LC-MS and Methyl Orange Methods for Improved Residual Surfactant Detection in Liquids-Rich Shale Plays

2021 ◽  
Author(s):  
Kai He ◽  
John Heckel ◽  
Vittoria Balsamo De Hernandez ◽  
Duy Nguyen

Abstract Successful field trials of surfactant-based Production Enhancement (PROE) technology in different shale plays including Permian Basin, Bakken and Eagle Ford indicate that specially tailored surfactant formulations can improve the unconventional well productivity during flowback and production. One major challenge for the operator is to further optimize the surfactant dosage to maximize the economic return. Analysis of the residual surfactant concentration in the produced water (PW) might provide a new path to optimize the surfactant application in the field. Such quantitative measurements can help understand how much surfactant is consumed in the downhole and how much surfactant is in the flowback, and possibly correlate back to the well performance. Additionally, surfactant partitioning and adsorption behaviors can be studied through residual analysis, which will further provide guidance to develop next generation of surfactant formulations. In this study, a liquid chromatography-mass spectrometry (LC-MS) method was developed to accurately measure the residual surfactant concentration in the produced water. The liquid chromatograph (LC) separates the surfactant from sample matrix and avoids the possible interference, and then the mass spectrometer (MS) detects the separated surfactant, signal correlating to the residual concentration. This analytical method provides unrivalled selectivity and specificity compared to other methods reported in the literature. In addition, a Methyl Orange method was developed and can potentially be used in the field for quicker measurements. Produced water samples collected from a Huff-and-Puff treatment in the Permian Basin were evaluated using both methods. Our results indicate that both methods can successfully capture the trend of residual concentration vs. production time. The deviation between LC-MS and Methyl Orange measurements was due to the presence of ADBAC (alkyldimethylbenzylammonium chloride) in the produced water, which is a cationic amine surfactant typically used as biocide in the well stimulation. It produces positive interference and thus leads to a higher residual detection in the Methyl Orange test. Notably, the residual concentration of surfactant in produced water decreased with time after the well was placed back to production, which is consistent with the concept that more surfactant will adsorb to the rock surface or partition into the oil phase over production time. In summary, we believe the LC-MS and Methyl Orange methods can potentially be used to detect residual concentration for any type of surfactant-based applications in unconventional reservoirs including Huff-and-Puff, completion, frac protect, surfactant flooding and re-frac. The field application of surfactant-based chemistry followed by this type of residual analysis can help understand the underlying mechanisms of the surfactant and provide further guidance for production optimization of shales.

2020 ◽  
Vol 20 (2) ◽  
pp. 360
Author(s):  
Ku Esyra Hani ◽  
Mohammed Abdalla Ayoub

The objective of this study was to investigate the effect of polymer (GLP-100) and surfactant (MFOMAX) towards the efficiency of oil removal in a flotation column by using the Response Surface Methodology (RSM). Various concentrations of surfactant (250, 372 and 500 ppm) and polymer (450, 670, and 900 ppm) produced water were prepared. Dulang crude oil was used in the experiments. Flotation operating parameters such as gas flow rate (1–3 L/min) and duration of flotation (2–10 min) were also investigated. The efficiency of oil removal was calculated based on the difference between the initial concentration of oil and the final concentration of oil after the flotation process. From the ANOVA analysis, it was found that the gas flow rate, surfactant concentration, and polymer concentration contributed significantly to the efficiency of oil removal. Extra experiments were conducted to verify the developed equation at a randomly selected point using 450 ppm of polymer concentration, 250 ppm of surfactant concentration, 3 L/min gas flowrate and duration of 10 min. From these extra experiments, a low standard deviation of 1.96 was discovered. From this value, it indicates that the equation can be used to predict the efficiency of oil removal in the presence of surfactant and polymer (SP) by using a laboratory flotation column.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1710 ◽  
Author(s):  
Mirjalal Babayev ◽  
Hongbo Du ◽  
Venkata S. V. Botlaguduru ◽  
Raghava R. Kommalapati

Unconventional oil and gas extraction generates large quantities of produced water (PW). Due to strict environmental regulations, it is important to recover and reuse PW. In this study, commercial polyethersulfone (PES) ultrafiltration (UF) membranes were surface-modified with zwitterionic polymer 3-(3,4-Dihydroxyphenyl)-l-alanine (l-DOPA) solution to alleviate membrane fouling during the ultrafiltration of shale oil PW of the Permian Basin. UF membranes were coated in l-DOPA solution by using a dip coating technique. Membrane characterization tests confirmed successful l-DOPA coating on UF membranes. While performing the experiments, permeate flux behaviors of the uncoated and coated membranes and antifouling resistance of the zwitterionic coating were evaluated. Among the coated UF membranes with varying coating times from one day to three days, the three-day coated UF membrane showed a good flux performance and the highest fouling resistance. The flux reduced by 38.4% for the uncoated membrane, while the reduction was 16% for the three-day coated membrane after the 5 h ultrafiltration of PW. Both improvements of the flux performance and recovery ratio are attributed to a negatively-charged surface developed on the membranes after the zwitterionic coating. The UF pretreatment also improved the flux behavior of the later forward osmosis (FO) process for PW treatment.


2020 ◽  
Vol 121 ◽  
pp. 104688
Author(s):  
James Gardiner ◽  
R. Burt Thomas ◽  
Thai T. Phan ◽  
Mengling Stuckman ◽  
Jiaan Wang ◽  
...  

2020 ◽  
Author(s):  
Jens Birkholzer ◽  
Joseph Morris ◽  
John Bargar ◽  
Abdullah Cihan ◽  
Dustin Crandall ◽  
...  

<p>The Hydraulic Fracturing Test Site (HFTS) project, fielded a few years ago within the Wolfcamp Formation in the Permian Basin in the United States, provides an excellent opportunity to further develop our understanding of the geomechanical response to hydraulic stimulation and associated production in shale lithologies. In addition to a full set of geophysical and tracer observations, the project obtained core samples from wells drilled through the stimulated region, characterizing the propagation of fractures, reactivation of pre-existing natural fractures, and placement of proppant. In addition to providing an overview of the available field data from the field test, we describe here a multi-scale modeling effort to investigate the hydrologic, mechanical and geochemical response of the Wolfcamp Formation to stimulation and production. The ultimate outcome of this project is the application and validation of a new framework for microscopic to reservoir scale simulations, built upon a fusion of existing high performance simulation capabilities.</p><p>The modeling occurs across two spatial domains – the “reservoir scale”, which encompasses the intra- and inter-well regions, and the “inter-fracture scale”, which is the region between stimulated fractures. Physics-based simulations of the fracture network evolution upon stimulation at the reservoir scale using the simulator GEOS provide input for reservoir-scale production simulations conducted with the TOUGH family of codes. At the inter-fracture scale, the fluid dynamics and reactive transport Chombo-Crunch code is used simulate the micro-scale pore-resolved physical processes occurring at the fracture and rock interfaces upon stimulation and production, tested against laboratory studies of proppant transport and pore-scale reactions. Micro-scale modeling and imaging provides upscaled flow and transport parameters for larger-scale reservoir modeling and production optimization.</p>


2021 ◽  
Author(s):  
Carl Harman ◽  
Michael McDonald ◽  
Paul Short ◽  
William Ott

Abstract The use of freshwater, near freshwater, or treated water in hydraulic fracturing represents an ever-increasing cost in the Permian Basin. Environmental concerns add to the pressure to develop methods to use significantly higher volumes of produced water in hydraulic fracture fluids. To solve the challenge of viscosifying untreated, high total dissolved solids water a move was made away from organic-based viscosifiers to silica-based technology. Fumed silica is highly effective as a viscosifier for high-density brines that has demonstrated excellent low-end rheology, exceptional suspending ability, and a nominal filter cake. However, the high cost of fumed silica and operational challenges have precluded commercial adoption. This paper describes thatsimilar rheology is achievable at a fraction of the cost using a silica gel. The focus of the paper is on the field trials in West Texas where untreated produced water was viscosified with silica gel and run as alternatives to a standard 20 lb/Mgal crosslinked guar fluid made with fresh water. Low cost and operational efficiencies were obtained bypreparingthe silica gel on-location using standard and readily available hydraulic fracturing equipment. Procedures for making the silica gel-based frac fluid were similar to those of making a crosslinked guar fluid. Field trials have demonstrated that silica-gel carries high loadings of 20/40 mesh sand even at low pump rates. Production data from the trials has varied from exceeding expectations to being similar to existing production results.On a chemical cost basis, silica gel is comparable to a borate-cross-linked guar frac fluid. The economics tip very much in favor of silica gel when factoring in the savings using untreated produced water.


2014 ◽  
Author(s):  
James Johnstone ◽  
Susanna Toivonen ◽  
Rick Griffin ◽  
Ashleigh O'Brien ◽  
Paul Mundill ◽  
...  

Abstract Scale inhibitors are used extensively in the oil and gas industry to provide the level of flow assurance required to maximise safe and economic hydrocarbon production. For both continuous and scale squeeze treatments, residual inhibitor concentrations need to be verified on a continual basis to assure the field operator that the implemented scale management program remains effective. To date, the analytical work required to verify residual inhibitor levels of the majority of scale inhibitor chemistries needs to be carried out onshore in a suitably equipped analytical laboratory. Often the time delay from sample collection to reporting of analytical results introduces a significant level of uncertainty with regard to effective scale control which, if removed, would substantially improve the production assurance and safety of the facility operations. The Residual Monitoring and Analysis system is a point-of-use monitoring platform designed to measure the residual concentration of polymeric scale inhibitors with average molecular weight less than 10 000 Da in produced water, providing a timely and accurate residual scale inhibitor concentration to the facility operator. The analysis procedure can be carried out at the production location where the sample is taken, with the result obtained and recorded within 30minutes or less. The analysis method is unaffected by either the presence of other production chemicals or by the variation in typical North Sea produced water composition. The measurement system utilises the Aqsens aqueous liquid fingerprinting technology platform (Hänninen et al. 2013) and can be designed to work with a wide range of scale inhibitor chemistries; a specific tag/label is not necessary. Unlike other systems, the analytical method is not based on immunoassay detection technology that requires modification of the scale inhibitor formulation to include tagged polymer-specific antibodies. We have deliberately reverse engineered this for a range of current scale inhibitor products to provide direct field analysis to customers on either continuous or scale squeeze application programs. The system derives its sensitivity by combining time-resolved fluorescence with carefully optimised chemistries to quantify the product for scale inhibition levels. Performance results from laboratory testing and coreflood experiments will be presented.


2021 ◽  
Author(s):  
Hooisweng Ow ◽  
Sehoon Chang ◽  
Gawain Thomas ◽  
Wei Wang ◽  
Afnan A. Mashat ◽  
...  

Abstract The development of automatable high sensitivity analytical methods for tracer detection has been one of the most central challenges to realize ubiquitous full-field tracer deployment to study reservoirs with many cross-communicating injector and producer wells. Herein we report a tracer analysis approach, inspired by strategies commonly utilized in the biotechnology industry, that directly addresses key limitations in process throughput, detection sensitivity and automation potential of state-of-the-art technologies. A two-dimensional high performance liquid chromatography (2D-HPLC) method was developed for the rapid fluorescence detection and simultaneous identification of a class of novel barcoded tracers in produced water down to ultra-trace concentration ranges (<1ppb), matching the sensitivity of tracer technologies currently used in the oil industry. The sample preparation process throughput was significantly intensified by judicious adaptations of off-the-shelf biopharma automation solutions. The optical detection sensitivity was further improved by the time-resolved luminescence of the novel tracer materials that allows the negation of residual background signals from the produced water. To showcase the potential, we applied this powerful separation and detection methodology to analyze field samples from two recent field validations of a novel class of optically detectable tracers, in which two novel tracers were injected along with a benchmarking conventional fluorobenzoic acid (FBA)-based tracer. The enhanced resolving power of the 2D chromatographic separation drastically suppressed the background signal, enabling the optical detection of a tracer species injected at 10x lower concentration. Further, we orthogonally confirmed the detection of this tracer species by the industry standard high-resolution accurate mass spectrometry (HRAM) technique, demonstrating comparable limits of detection. Tracer detection profile indicated that the transport behavior of the novel optical tracers through highly saline and retentive reservoir was similar to that of FBAs, validating the performance of this new class of tracers. Promising steps toward complete automation of the tracer separation and detection procedure have drastically reduced manual interventions and decreased the analysis cycle time, laying solid foundation to full-field deployment of tracers for better reservoir characterizations to inform decisions on production optimization. This paper outlines the automatable tracer detection methodology that has been developed for robustness and simplicity, so that efficient utilization of the resultant high-resolution tracer data can be applied toward improving production strategy via intelligent and active rate adjustments.


Author(s):  
Wei Wang ◽  
Wei Wei ◽  
Mehrnoosh Saneifar ◽  
Baosheng Liang ◽  
Jason Parizek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document