Automatable High Sensitivity Tracer Detection: Toward Tracer Data Enriched Production Management of Hydrocarbon Reservoirs

2021 ◽  
Author(s):  
Hooisweng Ow ◽  
Sehoon Chang ◽  
Gawain Thomas ◽  
Wei Wang ◽  
Afnan A. Mashat ◽  
...  

Abstract The development of automatable high sensitivity analytical methods for tracer detection has been one of the most central challenges to realize ubiquitous full-field tracer deployment to study reservoirs with many cross-communicating injector and producer wells. Herein we report a tracer analysis approach, inspired by strategies commonly utilized in the biotechnology industry, that directly addresses key limitations in process throughput, detection sensitivity and automation potential of state-of-the-art technologies. A two-dimensional high performance liquid chromatography (2D-HPLC) method was developed for the rapid fluorescence detection and simultaneous identification of a class of novel barcoded tracers in produced water down to ultra-trace concentration ranges (<1ppb), matching the sensitivity of tracer technologies currently used in the oil industry. The sample preparation process throughput was significantly intensified by judicious adaptations of off-the-shelf biopharma automation solutions. The optical detection sensitivity was further improved by the time-resolved luminescence of the novel tracer materials that allows the negation of residual background signals from the produced water. To showcase the potential, we applied this powerful separation and detection methodology to analyze field samples from two recent field validations of a novel class of optically detectable tracers, in which two novel tracers were injected along with a benchmarking conventional fluorobenzoic acid (FBA)-based tracer. The enhanced resolving power of the 2D chromatographic separation drastically suppressed the background signal, enabling the optical detection of a tracer species injected at 10x lower concentration. Further, we orthogonally confirmed the detection of this tracer species by the industry standard high-resolution accurate mass spectrometry (HRAM) technique, demonstrating comparable limits of detection. Tracer detection profile indicated that the transport behavior of the novel optical tracers through highly saline and retentive reservoir was similar to that of FBAs, validating the performance of this new class of tracers. Promising steps toward complete automation of the tracer separation and detection procedure have drastically reduced manual interventions and decreased the analysis cycle time, laying solid foundation to full-field deployment of tracers for better reservoir characterizations to inform decisions on production optimization. This paper outlines the automatable tracer detection methodology that has been developed for robustness and simplicity, so that efficient utilization of the resultant high-resolution tracer data can be applied toward improving production strategy via intelligent and active rate adjustments.

2020 ◽  
Author(s):  
Chenxi Li ◽  
Manyun Qian ◽  
Qiaozhen Hong ◽  
Xiaohong Xin ◽  
Zichun Sun ◽  
...  

Abstract Autoantibodies against M-type phospholipase A2 receptor (PLA2R) are specific biomarkers for idiopathic membranous nephropathy (IMN) and their quantification has been helpful to monitor disease activity. In this study, we describe a highly sensitive and rapid quantum dots-based immunochromatography assay (QD-ICA) for quantifying PLA2R autoantibodies. Serum samples from 135 biopsy-confirmed patients with nephrotic syndrome were analyzed for PLA2R autoantibodies using the novel QD-ICA as well as enzyme-linked immunosorbent assay (ELISA). The detection sensitivity and specificity of QD-ICA (80.9 and 100%, respectively) exceeded those of ELISA (72.1 and 98.5%, respectively). The optimum cut-off value of QD-ICA was 18.18 RU/mL and limit of detection was 2.86 relative units/mL. The novel QD-ICA outperforms ELISA in detecting PLA2R autoantibodies, with shorter detection time, fewer steps, smaller equipment size, and broader testing application, suggesting its capability to improve IMN diagnosis and monitor patient response to treatment.


Author(s):  
Kazumichi Ogura ◽  
Michael M. Kersker

Backscattered electron (BE) images of GaAs/AlGaAs super lattice structures were observed with an ultra high resolution (UHR) SEM JSM-890 with an ultra high sensitivity BE detector. Three different types of super lattice structures of GaAs/AlGaAs were examined. Each GaAs/AlGaAs wafer was cleaved by a razor after it was heated for approximately 1 minute and its crosssectional plane was observed.First, a multi-layer structure of GaAs (100nm)/AlGaAs (lOOnm) where A1 content was successively changed from 0.4 to 0.03 was observed. Figures 1 (a) and (b) are BE images taken at an accelerating voltage of 15kV with an electron beam current of 20pA. Figure 1 (c) is a sketch of this multi-layer structure corresponding to the BE images. The various layers are clearly observed. The differences in A1 content between A1 0.35 Ga 0.65 As, A1 0.4 Ga 0.6 As, and A1 0.31 Ga 0.69 As were clearly observed in the contrast of the BE image.


2019 ◽  
Author(s):  
Jiajun Wang ◽  
Meng-Yin Li ◽  
Jie Yang ◽  
Ya-Qian Wang ◽  
Xue-Yuan Wu ◽  
...  

DNA lesion such as metholcytosine(<sup>m</sup>C), 8-OXO-guanine(<sup>O</sup>G), inosine(I) <i>etc</i> could cause the genetic diseases. Identification of the varieties of lesion bases are usually beyond the capability of conventional DNA sequencing which is mainly designed to discriminate four bases only. Therefore, lesion detection remain challenge due to the massive varieties and less distinguishable readouts for minor structural variations. Moreover, standard amplification and labelling hardly works in DNA lesions detection. Herein, we designed a single molecule interface from the mutant K238Q Aerolysin, whose confined sensing region shows the high compatible to capture and then directly convert each base lesion into distinguishable current readouts. Compared with previous single molecule sensing interface, the resolution of the K238Q Aerolysin nanopore is enhanced by 2-order. The novel K238Q could direct discriminate at least 3 types (<sup>m</sup>C, <sup>O</sup>G, I) lesions without lableing and quantify modification sites under mixed hetero-composition condition of oligonucleotide. Such nanopore could be further applied to diagnose genetic diseases at high sensitivity.


Author(s):  
Po Fu Chou ◽  
Li Ming Lu

Abstract Dopant profile inspection is one of the focused ion beam (FIB) physical analysis applications. This paper presents a technique for characterizing P-V dopant regions in silicon by using a FIB methodology. This technique builds on published work for backside FIB navigation, in which n-well contrast is observed. The paper demonstrates that the technique can distinguish both n- and p-type dopant regions. The capability for imaging real sample dopant regions on current fabricated devices is also demonstrated. SEM DC and FIB DC are complementary methodologies for the inspection of dopants. The advantage of the SEM DC method is high resolution and the advantage of FIB DC methodology is high contrast, especially evident in a deep N-well region.


2021 ◽  
Vol 11 (15) ◽  
pp. 6992
Author(s):  
Tie Zhang ◽  
Yuxin Xing ◽  
Gaoxuan Wang ◽  
Sailing He

An optical system for gaseous chloroform (CHCl3) detection based on wavelength modulation photoacoustic spectroscopy (WMPAS) is proposed for the first time by using a distributed feedback (DFB) laser with a center wavelength of 1683 nm where chloroform has strong and complex absorption peaks. The WMPAS sensor developed possesses the advantages of having a simple structure, high-sensitivity, and direct measurement. A resonant cavity made of stainless steel with a resonant frequency of 6390 Hz was utilized, and eight microphones were located at the middle of the resonator at uniform intervals to collect the sound signal. All of the devices were integrated into an instrument box for practical applications. The performance of the WMPAS sensor was experimentally demonstrated with the measurement of different concentrations of chloroform from 63 to 625 ppm. A linear coefficient R2 of 0.999 and a detection sensitivity of 0.28 ppm with a time period of 20 s were achieved at room temperature (around 20 °C) and atmosphere pressure. Long-time continuous monitoring for a fixed concentration of chloroform gas was carried out to demonstrate the excellent stability of the system. The performance of the system shows great practical value for the detection of chloroform gas in industrial applications.


Sign in / Sign up

Export Citation Format

Share Document