Steady-State Gas Flow from Tight Shale Matrix Subject to Water Blocking

SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Pål Østebø Andersen

Summary This work studies 1D steady-state flow of gas from compressible shale matrix subject to water blocking toward a neighboring fracture. Water blocking is a capillary end effect causing wetting phase (e.g., water) to accumulate near the transition from matrix to fracture. Hydraulic fracturing is essential for economical shale gas production. Water is frequently used as fracturing fluid, but its accumulation in the matrix can reduce gas mobility and production rate. Gas transport is considered at a defined pressure drop. The model accounts for apparent permeability (slip), compressibility of gas and shale, permeability reduction, saturation tortuosity (reduced relative permeability upon compaction), and multiphase flow parameters like relative permeability and capillary pressure, which depend on wettability. The behavior of gas flow rate and distributions of gas saturation, pressure, and permeability subject to different conditions and the stated mechanisms is explored. Water blockage reduces gas relative permeability over a large zone and reduces the gas flow rate. Despite gas flowing, strong capillary forces sustain mobile water over the entire system. Reducing drawdown gave lower driving force and higher resistance (by water blockage) for gas flow. The results show that 75% reduction of drawdown made the gas flow rate a couple orders of magnitude lower compared to if there was no blockage. The impact was most severe in more water-wetsystems. The blockage caused most of the pressure drop to occur near the outlet. High pressure in the rest of the system reduced effects from gas decompression, matrix compression, and slip-enhanced permeability, whereas rapid gradients in all these effects occurred near the outlet. Gas decompression resulted in an approximately 10 times higher Darcy velocity and pressure gradient near the outlet compared to inlet, which contributed to removing blockage, but the added resistance reduced the gas production rate. Similarly, higher gas Corey exponent associated gas flow with higher pressure drop. The result was less blockage but lower gas production. Slip increased permeability, especially toward the outlet, and contributed to increase in gas production by 16%. Significant matrix compression was associated with permeability reduction and increased Corey exponent in some examples. These effects reduced production and shifted more of the pressure drop toward the outlet. Upstream pressure was more uniform, and less compression and permeability reduction were seen overall compared to a system without water blockage.

1968 ◽  
Vol 39 (4) ◽  
pp. 608-609 ◽  
Author(s):  
W. Brennen ◽  
Robert L. Brown

1985 ◽  
Vol 39 (6) ◽  
pp. 916-920 ◽  
Author(s):  
R. K. Skogerboe ◽  
S. J. Freeland

This paper describes the results of the first stage of an investigation designed to extend present knowledge of the factors affecting aerosol production, transport, vaporization, and atomization in analytical spectroscopy systems. It focuses on factors controlling aspiration of aqueous solutions. The results demonstrate that the effect of gas flow on the pressure drop induced at the tip of the solution draw tube can be described by a simple linear equation; that the relationship between gas flow rate and solution nebulization rate can also be modelled by a simple equation; and that these relationships are not adequately represented by the Hagen-Poiseulle equation, as is often claimed.


2021 ◽  
Vol 11 (22) ◽  
pp. 10708
Author(s):  
Adel Almoslh ◽  
Falah Alobaid ◽  
Christian Heinze ◽  
Bernd Epple

An experimental study was conducted in the sieve tray column to investigate the influence of gas flow rate on the hydrodynamic characteristics of the sieve tray, such as total tray pressure drop, wet tray pressure drop, dry tray pressure drop, clear liquid height, liquid holdup, and froth height. The hydrodynamic characteristics of the sieve tray were investigated for the gas/water system at different gas flow rates from 12 to 24 Nm3/h and at different pressures of 0.22, 0.24, and 0.26 MPa. In this study, a simulated waste gas was used that consisted of 30% CO2 and 70% air. The inlet volumetric flow rate of the water was 0.148 m3/h. The temperature of the inlet water was 19.5 °C. The results showed that the gas flow rate has a significant effect on the hydrodynamic characteristics of the tray. The authors investigated the effect of changing these hydrodynamic characteristics on the performance of a tray column used for CO2 capture.


2021 ◽  
Vol 2 (2) ◽  
pp. 68
Author(s):  
Indah Widiyaningsih ◽  
Panca Suci Widiantoro ◽  
Suwardi Suwardi ◽  
Riska Fitri Nurul Karimah

The RF reservoir is a dry gas reservoir located in Northeast java offshore that has been produced since 2018.  The RF reservoir has produced 2 wells with cumulative production until December 2019 is 31.83 BSCF. In January 2018 the gas production rate from the two wells was 36 MMSCFD and the reservoir pressure at the beginning of production was 2449.5 psia, peak production occurred in April 2019 with a gas flow rate of 98 MMSCFD but in December 2019 the gas production rate from both wells decreased to 30 MMSCFD with reservoir pressure decreased to 1607.8 psia. Changes in gas flow rate and pressure in the RF reservoir will affect changes in reservoir performance, so it is necessary to analyze reservoir performance to determine reservoir performance in the future with the material balance method. Based on the results the initial gas in place (IGIP) is 80.08 BSCF. The drive mechanism worked on the RF reservoir until December 2019 was a depletion drive with a recovery factor up to 88% and a current recovery factor (CRF) is 40%. The remaining gas reserves in December 2019 is 39 BSCF and the reservoir will be made a production prediction until December 2032. Based on production predictions of the four scenarios, scenario 2 was chosen as the best scenario to develop the RF reservoir with a cumulative production is 66.1 BSCF and a recovery factor of 82.6%.


Author(s):  
R. М. Kondrat ◽  
О. R. Kondrat ◽  
L. І. Khaidarova ◽  
N. М. Hedzyk

The development of gas deposits at the final stage is usually complicated by watering production wells. With the advent of water in the formation product, the gas production rate decreases due to the decrease in the gas-saturated thickness of the reservoirs and the increase in pressure loss during movement of the liquid-gas mixture in the wellbore and flow lines as compared to the movement of gas only. Well operation is gradually becoming unstable, periodic with the subsequent cessation of natural flowing. The methods of operation of flooded wells are characterized. The use of the gas-lift method for the operation of flooded gas wells in depleted gas fields is justified. The effect of tubing diameter, wellhead pressure and water factor on the parameters of gas-lift operation of flooded wells is investigated. The research is carried out using the improved technique proposed by the authors and the PipeSim program for hypothetical (simulated) well conditions. The studies performed are presented in the form of graphical dependences of the production rate of reservoir gas, the minimum required gas production rate for the liquid to be taken from the bottom of the well to the surface, lift gas flow rate and bottomhole pressure on wellhead pressure, diameter of tubing and water factor. The research results indicate a significant coincidence of the values ​​of the calculated parameters of the gas-lift operation of the watered well according to the proposed methods and the PipeSim program. Using the research results, it is possible to select the optimal diameter of the tubing string and evaluate the value of formation gas flow rate and gas-lift flow rates for various values ​​of water factor and wellhead pressure.


2016 ◽  
Vol 11 (1) ◽  
pp. 312-324
Author(s):  
U. D Dobariya ◽  
P. N Sarsavadiya

Investigation on gasification of shredded cotton stalk was carried out by developing an open core throat less downdraft gasifier reactor (capacity: 70 MJh-1).Performance of the gasifier was carried out at six different gas flow rate (12, 14, 16, 18, 20 and 22 m3/h)levels.The gasifier performed best at 18 m3h-1gas flow rate with equivalence ratio,gasification efficiency, specific gasification rate,specific gas production rate and fuel consumption rate of 0.35, 71.05 %, 192.51 kgh-1m-2,481.28m3h-1m-2and 7.2 kgh-1respectively. The economic analysis was carried out by considering shredded cotton stalk as feed stalk and compared with briquette. The benefit cost ratio of the gasifier systemwas increased from 1.45 to 2.18 (50.34%) and payback period decreased from 5y9m to 3y 5m (40.39 %) considering shredded cotton stalk as feed stock and compared with briquette for (gas flow rate: 18 m3h-1, daily operation: 20 h per day) 270 days of operation per year.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


Sign in / Sign up

Export Citation Format

Share Document