First Worldwide Slim Coiled-Tubing Logging Tractor Deployment

2021 ◽  
pp. 1-11
Author(s):  
Laurie Duthie ◽  
Hussain Saiood ◽  
Abdulaziz Anizi ◽  
Bruce Moore

Summary Successful reservoir surveillance and production monitoring is a key component for effectively managing any field production strategy. For production logging in openhole horizontal extended reach wells (ERWs), the challenges are formidable and extensive; logging these extreme lengths in a cased hole would be difficult enough but is considerably exaggerated in the openhole condition. A coiled-tubing (CT) logging run in open hole must also contend with increased frictional forces, high dogleg severity, a quicker onset of helical buckling, and early lockup. The challenge of effectively logging these ERWs is further complicated by constraints in the completion where electrical submersible pumps (ESPs) are installed, including a 2.4-in. bypass section. Although hydraulically powered CT tractors already existed, a slim CT tractor with real-time logging capabilities was not available in the market. In partnership with a specialist CT tractor manufacturer, a slim logging CT tractor was designed and built to meet the exceptional demands of pulling the CT to target depth (TD). The tractor is 100% hydraulically powered, with no electrical power, allowing for uninterrupted logging during tractoring. The tractor is powered by the differential pressure from the bore of the CT to the wellbore and is operated by a preset pump rate from surface. Developed to improve the low coverage in openhole ERW logging jobs, the tractor underwent extensive factory testing before being deployed to the field. The tractor was rigged up on location with the production logging tool and run in hole (RIH). Once the CT locked up, the tractor was activated and pulled the coil to cover more than 90% of the openhole section, delivering a pulling force of up to 3,200 lbf. Real-time production logging was conducted simultaneously with the tractor activation; flowing and shut-in passes were completed to successfully capture the zonal inflow profile. Real-time logging with the tractor is logistically efficient and allows instantaneous decision making to repeat passes for improved data quality. The new slim logging tractor (SLT) is the world’s slimmest and most compact and is the first CT tractor of its kind to enable production logging operations in openhole horizontal ERWs. The importance of the ability to successfully log these ERWs cannot be overstated; reservoir simulations and management decisions are only as good as the quality of data available. Some of the advantages of drilling ERWs, such as increased reservoir contact, reduced footprint, and fewer wells drilled, will be lost if sufficient reservoir surveillance cannot be achieved. To maximize the benefits of ERWs, creative solutions and innovative designs must be developed continually to push the boundaries further.

2021 ◽  
Author(s):  
Laurie S. Duthie ◽  
Hussain A. Saiood ◽  
Abdulaziz A. Al-Anizi ◽  
Norman B. Moore ◽  
Carol Correia

Abstract Successful reservoir surveillance and production monitoring is a key component for effectively managing any field production strategy. For production logging in openhole horizontal extended reach wells (ERWs), the challenges are formidable and extensive; logging these extreme lengths in a cased hole would be difficult enough, but are considerably exaggerated in the openhole condition. A coiled tubing (CT) logging run in open hole must also contend with increased frictional forces, high dogleg severity, a quicker onset of helical buckling and early lockup. The challenge to effectively log these ERWs is further complicated by constraints in the completion where electrical submersible pumps (ESPs) are installed including a 2.4" bypass section. Although hydraulically powered coiled tubing tractors already existed, a slim CT tractor with real-time logging capabilities was not available in the market. In partnership with a specialist CT tractor manufacturer, a slim logging CT tractor was designed and built to meet the exceptional demands to pull the CT to target depth. The tractor is 100% hydraulically powered, with no electrical power allowing for uninterrupted logging during tractoring. The tractor is powered by the differential pressure from the bore of the CT to the wellbore, and is operated by a pre-set pump rate from surface. Developed to improve the low coverage in open hole ERW logging jobs, the tractor underwent extensive factory testing before being deployed to the field. The tractor was rigged up on location with the production logging tool and ran in hole. Once the coil tubing locked up, the tractor was activated and pulled the coil to cover over 90% of the open hole section delivering a pulling force of up to 3,200 lb. Real-time production logging was conducted simultaneously with the tractor activated, flowing and shut-in passes were completed to successfully capture the zonal inflow profile. Real-time logging with the tractor is logistically efficient and allows instantaneous decision making to repeat passes for improved data quality. The new slim logging tractor is the world's slimmest most compact, and the first of its kind CT tractor that enables production logging operations in horizontal extended reach open hole wells. The ability to successfully log these extended reach wells cannot be understated, reservoir simulations and management decisions can only as good as the quality of data available. Some of the advantages of drilling extended reach wells such as increased reservoir contact, reduced footprint and less wells drilled will be lost if sufficient reservoir surveillance cannot be achieved. To maximize the benefits of ERWs, creative solutions and innovative designs must continually be developed to push the boundaries further.


2021 ◽  
Author(s):  
Khaled M. Matar ◽  
Abdullah B. Al-Mutairi ◽  
Nakul Khandelwal ◽  
Sapna Chawla ◽  
Mohammad Alkreebani ◽  
...  

Abstract Drilling a multilateral well is generally recommended for several reasons such as achieving higher productivity indices and improving recovery in tight, low-permeable zones. While the many benefits of multilateral wells are attractive, they also have drawbacks which make these wells challenging. A key challenge is how to effectively stimulate all the laterals after they have been drilled. This paper presents the application of a unique intervention technique in a multilateral well to stimulate several laterals in a single run. To increase reservoir contact area the operator drilled a multilateral well composed of 4 legs. This was carried out despite the absence of proven ways to stimulate each lateral individually. This intervention would also present the following challenges: Well displacement and stimulation would require multiple re-entries into each lateral, all conducted from a drilling rig. All the laterals were known to branch off from the low side of the bore, so individual lateral and main-bore selection would be complex. Extended reach laterals require accurate friction lockup modelling and mitigations. The unique solution presented in this paper includes the use of real-time Hybrid cable coiled tubing (RTHCT) technology. This incorporates a hybrid cable installed in the coiled tubing (CT) string and a modular sensing bottom-hole assembly (MSBHA). Electrically controlled indexing tool, inclination sensor, tool-face sensor, and hydraulic knuckle joint were used as part of the BHA to enable real-time diagnostics and dynamic controls from surface to successfully enter the lateral legs. The MSBHA enabled the orientation of the BHA electrically to any position required using software to determine and control the exact position of the BHA. This paper presents a solution to all the above-mentioned challenges. It discusses the successful implementation of the RTHCT to displace and stimulate all the 4 laterals in a single CT trip in less than seven days, pumping over 7,000 bbls of various chemical systems and covering an open-hole length of 11,176 ft. Unlike other technologies, the RTHCT technology confirmed entries into the laterals without the need to tag the bottom of the lateral, saving substantial time. Enabling re-entry in these 4 laterals represented a world record translating into major efficiency improvements and cost savings for the project. This intervention also represented the first time in Kuwait that more than 2 laterals have been accessed in a CT run.


2021 ◽  
Vol 3 (1) ◽  
pp. 65-82
Author(s):  
Sören Henning ◽  
Wilhelm Hasselbring ◽  
Heinz Burmester ◽  
Armin Möbius ◽  
Maik Wojcieszak

AbstractThe Internet of Things adoption in the manufacturing industry allows enterprises to monitor their electrical power consumption in real time and at machine level. In this paper, we follow up on such emerging opportunities for data acquisition and show that analyzing power consumption in manufacturing enterprises can serve a variety of purposes. In two industrial pilot cases, we discuss how analyzing power consumption data can serve the goals reporting, optimization, fault detection, and predictive maintenance. Accompanied by a literature review, we propose to implement the measures real-time data processing, multi-level monitoring, temporal aggregation, correlation, anomaly detection, forecasting, visualization, and alerting in software to tackle these goals. In a pilot implementation of a power consumption analytics platform, we show how our proposed measures can be implemented with a microservice-based architecture, stream processing techniques, and the fog computing paradigm. We provide the implementations as open source as well as a public show case allowing to reproduce and extend our research.


2015 ◽  
Author(s):  
A. Ebrahimi ◽  
P. J. Schermer ◽  
W. Jelinek ◽  
D. Pommier ◽  
S. Pfeil ◽  
...  

2016 ◽  
Author(s):  
Diego Blanco ◽  
Khalid Rahimov ◽  
Silviu Livescu ◽  
Louis Garner ◽  
Lubos Vacik

2021 ◽  
Author(s):  
Seng Wei Jong ◽  
Yee Tzen Yong ◽  
Yusri Azizan ◽  
Richard Hampson ◽  
Rudzaifi Adizamri Hj Abd Rani ◽  
...  

Abstract Production decline caused by sand ingress was observed on 2 offshore oil wells in Brunei waters. Both wells were completed with a sub-horizontal openhole gravel pack and were subsequently shut in as the produced sand would likely cause damage to the surface facilities. In an offshore environment with limited workspace, crane capacity and wells with low reservoir pressures, it was decided to intervene the wells using a catenary coiled tubing (CT) vessel. The intervention required was to clean out the sand build up in the wells and install thru-tubing (TT) sand screens along the entire gravel packed screen section. Nitrified clean out was necessary due to low reservoir pressures while using a specialized jetting nozzle to optimize turbulence and lift along the deviated section. In addition, a knockout pot was utilized to filter and accommodate the large quantity of sand returned. The long sections of screens required could not be accommodated inside the PCE stack resulting in the need for the operation to be conducted as an open hole deployment using nippleless plug and fluid weight as well control barrier. A portable modular crane was also installed to assist the deployment of long screen sections prior to RIH with CT. Further challenges that needed to be addressed were the emergency measures. As the operation was to be conducted using the catenary system, the requirement for an emergency disconnect between the vessel and platform during the long cleanout operations and open hole deployment needed to be considered as a necessary contingency. Additional shear seal BOPs, and emergency deployment bars were also prepared to ensure that the operation could be conducted safely and successfully.


2021 ◽  
Author(s):  
Usman Ahmed ◽  
Zhiheng Zhang ◽  
Ruben Ortega Alfonzo

Abstract Horizontal well completions are often equipped with Inflow Control Devices (ICDs) to optimize flow rates across the completion for the whole length of the interval and to increase the oil recovery. The ICD technology has become useful method of optimizing production from horizontal wells in a wide range of applications. It has proved to be beneficial in horizontal water injectors and steam assisted gravity drainage wells. Traditionally the challenges related to early gas or water breakthrough were dealt with complex and costly workover/intervention operations. ICD manipulation used to be done with down-hole tractor conveyed using an electric line (e-line) cable or by utilization of a conventional coiled tubing (CT) string. Wellbore profile, high doglegs, tubular ID, drag and buoyancy forces added limitations to the e-line interventions even with the use of tractor. Utilization of conventional CT string supplement the uncertainties during shifting operations by not having the assurance of accurate depth and forces applied downhole. A field in Saudi Arabia is completed with open-hole packer with ICD completion system. The excessive production from the wells resulted in increase of water cut, hence ICD's shifting was required. As operations become more complex due to fact that there was no mean to assure that ICD is shifted as needed, it was imperative to find ways to maximize both assurance and quality performance. In this particular case, several ICD manipulating jobs were conducted in the horizontal wells. A 2-7/8-in intelligent coiled tubing (ICT) system was used to optimize the well intervention performance by providing downhole real-time feedback. The indication for the correct ICD shifting was confirmed by Casing Collar Locator (CCL) and Tension & Compression signatures. This paper will present the ICT system consists of a customized bottom-hole assembly (BHA) that transmits Tension, compression, differential pressure, temperature and casing collar locator data instantaneously to the surface via a nonintrusive tube wire installed inside the coiled tubing. The main advantages of the ICT system in this operation were: monitoring the downhole force on the shifting tool while performing ICD manipulation, differential pressure, and accurately determining depth from the casing collar locator. Based on the known estimated optimum working ranges for ICD shifting and having access to real-time downhole data, the operator could decide that required force was transmitted to BHA. This bring about saving job time while finding sleeves, efficient open and close of ICD via applying required Weight on Bit (WOB) and even providing a mean to identify ICD that had debris accumulation. The experience acquired using this method in the successful operation in Saudi Arabia yielded recommendations for future similar operations.


2013 ◽  
Vol 278-280 ◽  
pp. 831-834 ◽  
Author(s):  
Xiao Sun ◽  
Hao Zhou ◽  
Xiang Jiang Lu ◽  
Yong Yang

This paper designed a motor winding testing system, it can do the dielectric withstand voltage test of inter-turn under 30kV.The system can communicate effectively between PC and machine, by using the PC's powerful capacity of process data and PLC's better stability and the Labview's convenient UI. So the system has real-time data collection, preservation, analysis and other characteristics. This system is able to achieve factory testing and type testing of the motor windings facilitating. Various performance indicators were stable and reliable by field test during a long time.


Sign in / Sign up

Export Citation Format

Share Document