A Coupled Model of Temperature and Pressure for Managed Pressure Cementing in Deep-Water Region

2021 ◽  
Author(s):  
Xuerui Wang ◽  
Feng Hao ◽  
Baojiang Sun ◽  
Zhiyuan Wang

Abstract The narrow density window in deep-water environment brought great challenges to well drilling and completion by causing well control issues. Managed Pressure Cementing (MPC) is a new technology developed from Manage Pressure Drilling (MPD), which can precisely control the annular fluid pressure profile. Accurate calculation of wellbore temperature and pressure is the key to MPC. This paper focus on coupled models of temperature and pressure for MPC in deep-water region. The well cementing process can be divided into two stages: fluid displacement stage and cement setting stage, which displays different characteristics. During the cementing displacement stage, the cement is in a flowable slurry state and is circulated into the annulus. During this process, the rheology of fluids if effected by temperature in wellbore. On basis of the fluid rheology model, a coupled model of temperature and pressure in wellbore is established considering the transient flow characteristics during cementing displacement stage. During cement setting stage, the cement slurry stops flowing and the significant cement hydration reaction starts. A large amount of hydration heat and obvious pressure reduction can be observed. On basis of the cement hydration kinetics model, a coupled model of temperature and pressure in wellbore during cementing setting stage is established. Based on the models established in this paper, a series of numerical simulations are conducted using a deep-water well. Simulation results show that neglecting the complicated interactions between temperature and pressure can cause a big error. During the cementing displacement stage, higher temperature in the deep part of wellbore reduces the fluid viscosity, which leads to a smaller friction. On the contrary, larger friction is observed near seabed as a result of the low temperature in deep-water environment. The pressure in wellbore changes frequently due to the coexistence of multiple fluids in wellbore. Therefore, a frequent control of annular fluid pressure is required using the MPC technology. During the cement setting stage, an obvious temperature increase is observed as a result of cement hydration heat. The pressure decreases with the depending of cement hydration. An addition back pressure at wellhead has to be added using the MPC technology. The transient temperature and pressure have impact on the rate of cement hydration in turn. Cement in the deep part of wellbore have a faster rate of cement hydration. The low temperature at mudline slows the cement hydration process. Considering the complicated interactions between temperature, pressure, cement hydration and fluid rheology, coupled models between temperature and pressure based on hydration kinetics during well cementing in deep-water region is established in the manuscript. The new model established in this paper plays an important role in the MPC technology.

2020 ◽  
Vol 47 (4) ◽  
pp. 867-876
Author(s):  
Xuerui WANG ◽  
Baojiang SUN ◽  
Shujie LIU ◽  
Zhong LI ◽  
Zhengli LIU ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8180
Author(s):  
Kunhong Lv ◽  
Hao Huang ◽  
Xingqiang Zhong ◽  
Yian Tong ◽  
Xingjie Ling ◽  
...  

The exploitations of deep-water wells often use directional well drilling to reach the target layer. Affected by special environments in deep water, the prediction of pressure loss of cement slurry is particularly important. This paper presents a prediction model of pressure loss suitable for deep-water directional wells. This model takes the complex interaction between the temperature, pressure and hydration kinetics of cement slurry into account. Based on the initial and boundary conditions, the finite difference method is used to discretize and calculate the model to ensure the stability and convergence of the result calculated by this model. Finally, the calculation equation of the model is used to predict the transient temperature and pressure loss of Wells X1 and X2, and a comparison is made between the predicted value and the monitoring data. The comparison results show that the maximum error between the temperature and pressure predicted by the model and the field measured value is within 6%. Thus, this model is of high accuracy and can meet the needs of site construction. It is concluded that this result can provide reliable theoretical guidance for temperature and pressure prediction, as well as the anti-channeling design of HTHP directional wells.


2021 ◽  
Vol 11 (14) ◽  
pp. 6638
Author(s):  
Wenhao Zhao ◽  
Xuping Ji ◽  
Yaqing Jiang ◽  
Tinghong Pan

This work aims to study the effect of a nucleating agent on cement hydration. Firstly, the C-S-H crystal nucleation early strength agent (CNA) is prepared. Then, the effects of CNA on cement hydration mechanism, early strength enhancement effect, C-S-H content, 28-days hydration degree and 28-days fractal dimension of hydration products are studied by hydration kinetics calculation, resistivity test, BET specific surface area test and quantitative analysis of backscattered electron (BSE) images, respectively. The results show that CNA significantly improves the hydration degree of cement mixture, which is better than triethanolamine (TEA). CNA shortens the beginning time of the induction period by 49.3 min and the end time of the cement hydration acceleration period by 105.1 min than the blank sample. CNA increases the fractal dimension of hydration products, while TEA decreases the fractal dimension. CNA significantly improves the early strength of cement mortars; the 1-day and 3-days strength of cement mortars with CNA are more than the 3-days and 7-days strength of the blank sample. These results will provide a reference for the practical application of the C-S-H nucleating agent.


2005 ◽  
Vol 18 (13) ◽  
pp. 2441-2459 ◽  
Author(s):  
J. Zavala-Garay ◽  
C. Zhang ◽  
A. M. Moore ◽  
R. Kleeman

Abstract The possibility that the tropical Pacific coupled system linearly amplifies perturbations produced by the Madden–Julian oscillation (MJO) is explored. This requires an estimate of the low-frequency tail of the MJO. Using 23 yr of NCEP–NCAR reanalyses of surface wind and Reynolds SST, we show that the spatial structure that dominates the intraseasonal band (i.e., the MJO) also dominates the low-frequency band once the anomalies directly related to ENSO have been removed. This low-frequency contribution of the intraseasonal variability is not included in most ENSO coupled models used to date. Its effect in a coupled model of intermediate complexity has, therefore, been studied. It is found that this “MJO forcing” (τMJO) can explain a large fraction of the interannual variability in an asymptotically stable version of the model. This interaction is achieved via linear dynamics. That is, it is the cumulative effect of individual events that maintains ENSOs in this model. The largest coupled wind anomalies are initiated after a sequence of several downwelling Kelvin waves of the same sign have been forced by τMJO. The cumulative effect of the forced Kelvin waves is to persist the (small) SST anomalies in the eastern Pacific just enough for the coupled ocean–atmosphere dynamics to amplify the anomalies into a mature ENSO event. Even though τMJO explains just a small fraction of the energy contained in the stress not associated with ENSO, a large fraction of the modeled ENSO variability is excited by this forcing. The characteristics that make τMJO an optimal stochastic forcing for the model are discussed. The large zonal extent is an important factor that differentiates the MJO from other sources of stochastic forcing.


2021 ◽  
Author(s):  
Bohuslav Slánský ◽  
Vit Šmilauer ◽  
Jiří Hlavatý ◽  
Richard Dvořák

A jointed plain concrete pavement represents a reliable, historically proven technical solution for highly loaded roads, highways, airports and other industrial surfaces. Excellent resistance to permanent deformations (rutting) and also durability and maintenance costs play key roles in assessing the economic benefits, rehabilitation plans, traffic closures, consumption and recycling of materials. In the history of concrete pavement construction, slow-to-normal hardening Portland cement was used in Czechoslovakia during the 1970s-1980s. The pavements are being replaced after 40-50 years of service, mostly due to vertical slab displacements due to missing dowel bars. However, pavements built after 1996 used rapid hardening cements, resulting in long-term surface cracking and decreased durability. In order to build durable concrete pavements, slower hardening slag-blended binders were designed and tested in the restrained ring shrinkage test and in isothermal calorimetry. Corresponding concretes were tested mainly for the compressive/tensile strength evolution and deicing salt-frost scaling to meet current specifications. The pilot project was executed on a 14 km highway, where a unique temperature-strain monitoring system was installed to provide long-term data from the concrete pavement. A thermo-mechanical coupled model served for data validation, showing a beneficial role of slower hydration kinetics. Continuous monitoring interim results at 24 months have revealed small curling induced by drying and the overall small differential shrinkage of the slab.


2009 ◽  
Vol 22 (10) ◽  
pp. 2541-2556 ◽  
Author(s):  
Malcolm J. Roberts ◽  
A. Clayton ◽  
M.-E. Demory ◽  
J. Donners ◽  
P. L. Vidale ◽  
...  

Abstract Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.


Author(s):  
Weiwei Song ◽  
Xingqian Fu ◽  
Yong Pang ◽  
Dahao Song ◽  
Qing Xu ◽  
...  

With the rapid development of China, water pollution is still a serious problem despite implementation of control measures. Reasonable water environment management measures are very important for improving water quality and controlling eutrophication. In this study, the coupled models of hydrodynamics, water quality, and eutrophication were used to predict artificial Playground Lake water quality in the Zhenjiang, China. Recommended “unilateral” and “bilateral” river numerical models were constructed to simulate the water quality in the Playground Lake without or with water diversion by pump, sluice and push pump. Under “unilateral” and “bilateral” river layouts, total nitrogen and total phosphorus meet the landscape water requirement through water diversion. Tourist season in spring and summer and its suitable temperature result in heavier eutrophication, while winter is lighter. Under pumping condition, water quality and eutrophication of “unilateral” river is better than “bilateral” rivers. Under sluice diversion, the central landscape lake of “unilateral river” is not smooth, and water quality and eutrophication is inferior to the “bilateral”. When the water level exceeds the flood control level (4.1 m), priority 1 is launched to discharge water from the Playground Lake. During operation of playground, when water level is less than the minimum level (3.3 m), priority 2 is turned on for pumping diversion or sluice diversion to Playground Lake. After opening the Yangtze river diversion channel sluice, priority 3 is launched for sluice diversion to the Playground Lake. When the temperature is less than 15 °C, from 15 °C to 25 °C and higher than 25 °C, the water quality can be maintained for 15 days, 10 days and 7 days, respectively. Corresponding to the conditions of different priority levels, reasonable choices of scheduling measures under different conditions to improve the water quality and control eutrophication of the Playground Lake. This article is relevant for the environmental management of the artificial Playground Lake, and similar lakes elsewhere.


Sign in / Sign up

Export Citation Format

Share Document