Dynamic Reservoir Analysis of Corrib Field Surveillance Data Through the Use of Advanced Deconvolution Techniques

2021 ◽  
Author(s):  
Alexander Thatcher ◽  
Peter Colleran ◽  
William Roberts ◽  
Piers J. Johnson

Abstract This paper presents an analysis of the Corrib field surveillance dynamic pressure and rate data. The Corrib field, on production since December 2015, is a gas reservoir developed with six wells. The field static gas initially in place (GIIP) is around 1.2 Tcf of dry gas and the reservoir is comprised of a complex heterogeneous sandstone consisting of a high net to gross sequence of low sinuosity braided fluvial channel, sheet sand, playa and sandflat facies of varying reservoir quality (from single to hundreds of millidarcys) with an abundance of mapped faults. The dynamic reservoir analysis approach used in this study is based on a form of pressure-rate deconvolution that has been presented in an earlier paper SPE-195441 for the Tamar field, Israel. The pressure transient analysis (PTA) software that implements this analysis capability handles both singlewell and multi-well analysis problems. From a preliminary review of Corrib field dynamic behavior, it was concluded that this field data can be analyzed using single-well pressure-rate deconvolution applied to the data of each reservoir well separately. This contrasts with the Tamar field that required a true multiwell deconvolution analysis approach. Different approaches in these cases are dictated by the differences in reservoir architecture, geology, offtake strategy and the character of connectivity across these two fields. There are several pressure-rate deconvolution algorithms implemented in different PTA software tools used in the industry. All these algorithms implement a form of automatic regression and are sensitive to the quality of pressure and rate data that serve as input into the deconvolution algorithm. These automatic algorithms are often not robust enough to be used with surveillance type data acquired during long term production operations. The deconvolution approach used in this work is not automatic and, as a result, the deconvolution results are not as sensitive to the data quality. Rather, it relies on specialized software that facilitates manual reconstruction of constant rate drawdown responses. This human approach in combination with specialized software allows an engineer not to just reconstruct a drawdown response but to "explore" the pressure and rate data to develop significant insights of the dynamic reservoir behavior. This deeper understanding is an additional advantage over automated techniques and is the purpose of reservoir analysis. The Corrib field analysis discussed in this paper is a demonstration of what can be achieved using this combination of human intelligence and specialized software tools. Demonstration of the workflow used for manual reconstruction of deconvolved response functions and the role of the specialized software used that implements this workflow is explained. In the course of this reconstruction, an "exploration" process of trying to reconstruct the transient pressure behavior reflected in the data is engaged/utilized. Once reconstructed, this response is interpreted in terms of reservoir and well properties. The end result of this investigation is a deep understanding of the Corrib gas field dynamic behavior not easily obtained from conventional PTA methods. For example, it shows that early production data clearly exhibit signs of interference between wells. However, once the field production drops off the plateau period and the well production starts to decline, the six producing wells dynamically divide the reservoir into separate drainage areas and the well interference in a way "disappears" - the wells behave as if each of them produces from its own drainage compartment. This allows pressure rate deconvolution on a single-well basis, based on each compartment instead of using multi-well deconvolution on the field as a whole. The pore volume of each such compartment is reflected in the late time pressure behavior of the respective drawdown response associated with the well data. The sum of these individual pore volumes per well in the field yields the total pore volume connected to the wells that is supported by the reservoir dynamic behavior. These insights are reinforced by the use of synthetic models to provide clarity and understanding of the drainage compartment theory used during Corrib analysis.

2017 ◽  
Vol 13 (3) ◽  
pp. 68-78
Author(s):  
A. A. Pavlov ◽  
I. O. Datyev ◽  
M. G. Shishaev

Simulation is the main way for testing technologies in the field of multi-hop wireless networks (MWN). Creating a simulation model MWN - a time-consuming task associated with the use of specialized software tools, called network simulators. In this paper, the modern experience of modeling MWN and the main problems are formulated. One of the main problem is the comparative analysis' impossibility of the experiments results conducted by various researchers. This is due to the reasons associated with the models used for testing, the planning an imitation experiment and the principal differences in the network simulators. To solve this problem, authors propose a generalized conceptual model of MWN simulation and a specialized software package that automates the execution of experiment series in a heterogeneous modeling environment.


1978 ◽  
Vol 18 (05) ◽  
pp. 291-299
Author(s):  
S.T. Hong ◽  
J.C. Brooks

Abstract Free-standing caissons are used for supporting flare pipes and single-well production platforms. However, caissons tend to be flexible and dynamically sensitive, and the static design practice may not be adequate for this type of practice may not be adequate for this type of structure. To assess motion effect on the integrity of the structural system and to quantify the allowable motion for safe operation on board a caisson platform, analytical and experimental studies of platform, analytical and experimental studies of the dynamic behavior of a caisson structure were conducted and are described here. The analytical simulations agree well statistically with The motion measurements. A caisson design procedure considering dynamic effects was developed Design considerations include ultimate strength failure, fatigue failure, excessive motion, and possible damage during installation. A key feature in an effective caisson design is that the upper part of the caisson should be made as small as possible so that wave loading and the caisson period can be minimized The fatigue design procedure was verified with past caisson operational experience. To illustrate past caisson operational experience. To illustrate the procedure, a flare-pipe support caisson in 185 ft of water was designed and analyzed. Introduction Free-standing caissons are used for supporting flare pipes or single-well production platforms. The attractiveness of a caisson structure lies in the potential economy and the short time required for potential economy and the short time required for fabrication and installation. However, a caisson tends to be flexible, and dynamic effects may increase the design requirements from both strength and functional standpoints. To assess the motion effect on the integrity of the structural system and to quantify the allowable motion level for effective operation on board a caisson platform, analytical and experimental studies of the dynamic behavior of a caisson structure were conducted, and a procedure was formulated for designing a caisson considering dynamic effects. Observations from the experimental data and computer simulations of the caisson behavior are described. Verification of the computer simulation and some useful information for developing and using such simulations as well as practical interpretation of the analytical results practical interpretation of the analytical results also are given. Differences between a static design and a dynamic design are illustrated in an example design of a flare-support caisson in 185 ft water. MOTION MEASUREMENT Motion data were taken from a caisson platform offshore Louisiana. General dimensions of the caisson are shown in Fig. 1. SPEJ P. 291


2012 ◽  
Vol 15 (2) ◽  
Author(s):  
Raúl Peña-Ortiz ◽  
José A. Gil ◽  
Julio Sahuquillo ◽  
Ana Pont

The evolution of the World Wide Web from hypermedia information repositories to web applications such as social networking, wikis or blogs has introduced a new paradigm where users are no longer passive web consumers. Instead, users have become active con- tributors to web applications, so introducing a high level of dynamism in their behavior. Moreover, this trend is even expected to rise in the incoming Web. As a consequence, there is a need to develop new software tools that consider user dynamism in an appropiate and accurate way when generating dynamic workload for evaluating the performance of the current and incoming web. This paper presents a new testbed with the ability of defining and generating web dy- namic workload for e-commerce. For this purpose, we integrated a dynamic workload generator (GUERNICA) with a widely used benchmark for e-commerce (TPC-W).


2008 ◽  
Vol 41 (7) ◽  
pp. 2677-2682 ◽  
Author(s):  
Fernando C. Giacomelli ◽  
Izabel C. Riegel ◽  
Cesar L. Petzhold ◽  
Nádya P. da Silveira

1997 ◽  
Vol 3 (2) ◽  
pp. 73-80 ◽  
Author(s):  
Dong-Soo Lee ◽  
Dong-Hoon Choi

This paper presents an effective analysis approach for a flexible rotor in ball bearings with nonlinear stiffness characteristics to obtain realistic dynamic behavior results. The ball bearing is modeled in five degrees of freedom and the nonlinear stiffness characteristics of the bearing are completely described as functions of combined loads and spin speed. For dynamic behavior analysis of the nonlinear rotor-bearing system, a transfer-matrix method is iteratively used until the bearing displacements and the shaft displacements at every bearing location converge to the same values. The results show that the nonlinear stiffness characteristics of ball bearings significantly influence system dynamic behaviors and the proposed analysis approach for the nonlinear rotor-bearing system is effective.


2014 ◽  
Vol 658 ◽  
pp. 89-94 ◽  
Author(s):  
Zoltan Iosif Korka ◽  
Calin Octavian Miclosina ◽  
Vasile Cojocaru

Gears are frequently used in mechanical systems for power transmission, speed variation and for changing their operating sense. Mathematical modeling of gear transmissions offers a better understanding of their dynamic behavior. A significant amount of literature and studies are available in this field. Because the gears are critical components of any rotating machine, they have received considerable attention regarding their mathematical modeling, being published a lot of papers concerning this problem. The purpose of this paper is to present a mathematical model for studying the dynamic behavior of a single stage helical gearbox. Based on the proposed mathematical model and using specialized software, a numerical simulation of the gearbox dynamics will be performed. Simulation results will be compared with data obtained experimentally-obtained data.


Sign in / Sign up

Export Citation Format

Share Document