Dynamic Behavior and Design of Offshore Caissons

1978 ◽  
Vol 18 (05) ◽  
pp. 291-299
Author(s):  
S.T. Hong ◽  
J.C. Brooks

Abstract Free-standing caissons are used for supporting flare pipes and single-well production platforms. However, caissons tend to be flexible and dynamically sensitive, and the static design practice may not be adequate for this type of practice may not be adequate for this type of structure. To assess motion effect on the integrity of the structural system and to quantify the allowable motion for safe operation on board a caisson platform, analytical and experimental studies of platform, analytical and experimental studies of the dynamic behavior of a caisson structure were conducted and are described here. The analytical simulations agree well statistically with The motion measurements. A caisson design procedure considering dynamic effects was developed Design considerations include ultimate strength failure, fatigue failure, excessive motion, and possible damage during installation. A key feature in an effective caisson design is that the upper part of the caisson should be made as small as possible so that wave loading and the caisson period can be minimized The fatigue design procedure was verified with past caisson operational experience. To illustrate past caisson operational experience. To illustrate the procedure, a flare-pipe support caisson in 185 ft of water was designed and analyzed. Introduction Free-standing caissons are used for supporting flare pipes or single-well production platforms. The attractiveness of a caisson structure lies in the potential economy and the short time required for potential economy and the short time required for fabrication and installation. However, a caisson tends to be flexible, and dynamic effects may increase the design requirements from both strength and functional standpoints. To assess the motion effect on the integrity of the structural system and to quantify the allowable motion level for effective operation on board a caisson platform, analytical and experimental studies of the dynamic behavior of a caisson structure were conducted, and a procedure was formulated for designing a caisson considering dynamic effects. Observations from the experimental data and computer simulations of the caisson behavior are described. Verification of the computer simulation and some useful information for developing and using such simulations as well as practical interpretation of the analytical results practical interpretation of the analytical results also are given. Differences between a static design and a dynamic design are illustrated in an example design of a flare-support caisson in 185 ft water. MOTION MEASUREMENT Motion data were taken from a caisson platform offshore Louisiana. General dimensions of the caisson are shown in Fig. 1. SPEJ P. 291

Author(s):  
Kenji Ikeda ◽  
Yusuke Kawamura ◽  
Masahiro Kobayashi ◽  
Taito Fukushima ◽  
Yushi Sorin ◽  
...  

Background: Although DC Bead has been useful in treatment of multiple and large hepatocellular carcinoma, loading time of doxorubicin into the DC Bead takes a long time of 30-120 minutes. Epirubicin is also used as an antitumor agent together with DC Bead, but its loading efficiency was not sufficiently elucidated. Methods: To shorten loading time of epirubicin into DC Bead (100-300µm, 300-500µm, 500-700µm), we examined the following three methods after mixing the drug: (a) let stand in room temperature, (b) agitated for 30 seconds with Vortex mixer, and (c) sonicated for 30 seconds with ultrasonic cleaner. After loading of epirubicin by each method, supernatant concentration for epirubicin was assayed at 5, 10, 30, 60, and 120 minutes. Results: Epirubicin loading rates for small bead (100-300µm) at 5 minutes were 82.9 % in group a, 93.8% in group b, and 79.9 % in group c. Similarly, medium bead (300-500µm), 40.1% in group a, 65.7% in group b and 45.5% in group c, respectively. In large-sized bead (500-700µm), loaded rates of epirubicin were 38.8% in group a, 59.0% in group b and 48.0% in group c. Agitation of mixture of epirubicin and DC Bead with Vortex mixer significantly shortened the loading time, but sonication did not affect the time required. Microscopic examination did not lead to any morphological change of microspheres in all the methods. Conclusions: Short time of agitation with Vortex mixer reduced the necessary time for loading of epirubicin in every standard of DC Bead.


1971 ◽  
Vol 11 (04) ◽  
pp. 390-398 ◽  
Author(s):  
J.A. Guin ◽  
R.S. Schechter

Abstract A mathematical model representing the changes in pore structure attending the invasion of a porous material by a reactive fluid tending to dissolve the solid bas previously been tested and found to be valid. This mathematical model is solved by a simulation procedure using Monte Carlo techniques. The results so obtained are indicative of the acidization of sandstone using a last-reacting acid (diffusion limited). A correlation relating the permeability improvement to the change in porosity is presented and found to be applicable to a wide class of initial pore-size distributions. This means that the designer need not have explicit knowledge of the initial pore structure to utilize the correlation. The generality of the correlation stems from the fact that after exposure to fast-acting acids (diffusion-controlled reactions) wormholing tends to occur in all porous matrices, and the acid allows preferentially through these channels. Thus, the process is independent of the fine pore structure since the fine pores receive no acid Wormholing bas been observed in almost all experimental studies of acidization, thus further confirming the validity of the model. Introduction Matrix acidization as practiced in the petroleum industry is a simple operation. Acids treated so as to prevent their corrosive attack on metal parts contacted are pumped down the wellbore and forced into the pore spaces of an oil-bearing rock. The rate of penetration is normally maintained small enough to prevent fracturing of the reservoir The aim of matrix acidization is to enhance the permeability of the region around the wellbore by permeability of the region around the wellbore by dissolving either a portion of the rock or of the foreign impurities that may have been introduced during the drilling operations. The success of this technique of oilwell stimulation is attested to by the fact that a significant fraction of the acids used for stimulation are injected at matrix rates. There were, moreover, in excess of 87 million gal of hydrochloric acid used last year in carbonate formations with many other special purpose acids such as acetic and formic having also been used for stimulation purposes. Despite the fact that acids have long been routinely used as a means of stimulating oil wells to greater production, there is, as yet, no reliable design procedure incorporating all of the essential features into a prediction of the new production that will result from a given acid treatment of a particular well. This lack of a design procedure particular well. This lack of a design procedure has been responsible for the rather minimal efforts expended in obtaining meaningful reaction rate data, for there is very little enthusiasm for obtaining data which cannot be put to practical application. This paper is an extension of some recently reported work on predicting the permeability change resulting from acid treatment of an oil-bearing rock. It has been proposed that the changes in the microstructure owing to acidization in a porous rock can be simulated by considering the effect of acidization of a collection of small, randomly distributed capillaries that are interconnected to the extent that a fluid will be conducted from point to point under the influence of an external pressure gradient. This model, the capillaric model, has been used with varying success in understanding the behavior of porous media. The use of the capillaric model in determining only the results of the evolution of a pore-size distribution, rather than as a vehicle for predicting a number of mare or less independent phenomena, such as capillary pressure curves and dispersion, is, as has been pressure curves and dispersion, is, as has been noted by Schechter and Gidley, a more limited and perhaps attainable goal. Taking the capillaric model to be correct, Guin et al. have shown that an equation relating the porosity change and the permeability change caused by an ideally retarded permeability change caused by an ideally retarded acid can be derived without any assumptions. SPEJ P. 390


EP Europace ◽  
2021 ◽  
Author(s):  
Monika Gawałko ◽  
David Duncker ◽  
Martin Manninger ◽  
Rachel M J van der Velden ◽  
Astrid N L Hermans ◽  
...  

Abstract Aims TeleCheck-AF is a multicentre international project initiated to maintain care delivery for patients with atrial fibrillation (AF) during COVID-19 through teleconsultations supported by an on-demand photoplethysmography-based heart rate and rhythm monitoring app (FibriCheck®). We describe the characteristics, inclusion rates, and experiences from participating centres according the TeleCheck-AF infrastructure as well as characteristics and experiences from recruited patients. Methods and results Three surveys exploring centre characteristics (n = 25), centre experiences (n = 23), and patient experiences (n = 826) were completed. Self-reported patient characteristics were obtained from the app. Most centres were academic (64%) and specialized public cardiology/district hospitals (36%). Majority of the centres had AF outpatient clinics (64%) and only 36% had AF ablation clinics. The time required to start patient inclusion and total number of included patients in the project was comparable for centres experienced (56%) or inexperienced in mHealth use. Within 28 weeks, 1930 AF patients were recruited, mainly for remote AF control (31% of patients) and AF ablation follow-up (42%). Average inclusion rate was highest during the lockdown restrictions and reached a steady state at a lower level after easing the restrictions (188 vs. 52 weekly recruited patients). Majority (>80%) of the centres reported no problems during the implementation of the TeleCheck-AF approach. Recruited patients [median age 64 (55–71), 62% male] agreed that the FibriCheck® app was easy to use (94%). Conclusion Despite different health care settings and mobile health experiences, the TeleCheck-AF approach could be set up within an extremely short time and easily used in different European centres during COVID-19.


Soft Matter ◽  
2021 ◽  
Author(s):  
Xiuchen Li ◽  
Jie Li ◽  
Zhaohui Zheng ◽  
Jinni Deng ◽  
Yi Pan ◽  
...  

The time delay existing between the chemical oscillation and mechanical oscillation (C-M delay) in a self-oscillating gel (SOG) system is observable in previous experimental studies. However, how the C-M delay...


2017 ◽  
Vol 10 ◽  
pp. 1-15
Author(s):  
P. Morais Pessôa ◽  
A.G. Barbosa de Lima ◽  
R. Swarnakar ◽  
J.P. Gomes ◽  
W.M.P. Barbosa de Lima

Cooling has been used for the preservation of fresh produce such as fruit and vegetables due to its low cost and high effectiveness in maintaining the product quality. Recently, several researchers have conducted theoretical and experimental studies for obtaining the kinetics of cooling and cooling time for fruits with different geometries. Present work, therefore, aims to simulate the cooling of fruits with particular reference to banana, orange, strawberry and Tahiti lemon. The transient heat conduction equation and its analytical solution using Galerkin based integral method are presented. It has been found that the strawberry has lower dimensionless cooling time compared with time required to cool other fruits, which is due to its higher surface area/volume ratio value. In orange and lemon the temperature distribution was found to be homogeneous in the angular direction, while in banana and strawberry it was two-dimensional due to shape of the fruits.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
M. S. Patil ◽  
Jose Mathew ◽  
P. K. Rajendrakumar ◽  
Sumit Karade

The presence of defect in the bearing (outer race, inner race, or ball) results in increased vibrations. Time domain indices such as rms, crest factor, and kurtosis are some of the important parameters used to monitor the condition of the bearing. Radial load and operating speed also have an important role in bearing vibrations. The interaction between the defect size, load, and speed helps to study their effect on vibrations more effectively. Response surface methodology (RSM) is a combination of statistical and mathematical techniques to represent the relationship between the inputs and the outputs of a physical system. But so far, the literature related to its application in bearing damage identification is scarce. The proposed study uses RSM to study the influence of defect size, load, and speed on the bearing vibrations. Kurtosis is used as response factor. Experiments are planned using Box Behnken design procedure. Experiments are performed using 6305 ball bearings and the results have been presented. MINITAB statistical software is used for analysis. It is seen from the analysis of the experimental results that the defect size, interaction effect of defect size and load, and interaction effect of defect size and speed are significant. Response surface method using Box Behnken design and analysis of variance has proved to be a successful technique to assess the significant factors related to bearing vibrations.


2021 ◽  
Author(s):  
Alexander Thatcher ◽  
Peter Colleran ◽  
William Roberts ◽  
Piers J. Johnson

Abstract This paper presents an analysis of the Corrib field surveillance dynamic pressure and rate data. The Corrib field, on production since December 2015, is a gas reservoir developed with six wells. The field static gas initially in place (GIIP) is around 1.2 Tcf of dry gas and the reservoir is comprised of a complex heterogeneous sandstone consisting of a high net to gross sequence of low sinuosity braided fluvial channel, sheet sand, playa and sandflat facies of varying reservoir quality (from single to hundreds of millidarcys) with an abundance of mapped faults. The dynamic reservoir analysis approach used in this study is based on a form of pressure-rate deconvolution that has been presented in an earlier paper SPE-195441 for the Tamar field, Israel. The pressure transient analysis (PTA) software that implements this analysis capability handles both singlewell and multi-well analysis problems. From a preliminary review of Corrib field dynamic behavior, it was concluded that this field data can be analyzed using single-well pressure-rate deconvolution applied to the data of each reservoir well separately. This contrasts with the Tamar field that required a true multiwell deconvolution analysis approach. Different approaches in these cases are dictated by the differences in reservoir architecture, geology, offtake strategy and the character of connectivity across these two fields. There are several pressure-rate deconvolution algorithms implemented in different PTA software tools used in the industry. All these algorithms implement a form of automatic regression and are sensitive to the quality of pressure and rate data that serve as input into the deconvolution algorithm. These automatic algorithms are often not robust enough to be used with surveillance type data acquired during long term production operations. The deconvolution approach used in this work is not automatic and, as a result, the deconvolution results are not as sensitive to the data quality. Rather, it relies on specialized software that facilitates manual reconstruction of constant rate drawdown responses. This human approach in combination with specialized software allows an engineer not to just reconstruct a drawdown response but to "explore" the pressure and rate data to develop significant insights of the dynamic reservoir behavior. This deeper understanding is an additional advantage over automated techniques and is the purpose of reservoir analysis. The Corrib field analysis discussed in this paper is a demonstration of what can be achieved using this combination of human intelligence and specialized software tools. Demonstration of the workflow used for manual reconstruction of deconvolved response functions and the role of the specialized software used that implements this workflow is explained. In the course of this reconstruction, an "exploration" process of trying to reconstruct the transient pressure behavior reflected in the data is engaged/utilized. Once reconstructed, this response is interpreted in terms of reservoir and well properties. The end result of this investigation is a deep understanding of the Corrib gas field dynamic behavior not easily obtained from conventional PTA methods. For example, it shows that early production data clearly exhibit signs of interference between wells. However, once the field production drops off the plateau period and the well production starts to decline, the six producing wells dynamically divide the reservoir into separate drainage areas and the well interference in a way "disappears" - the wells behave as if each of them produces from its own drainage compartment. This allows pressure rate deconvolution on a single-well basis, based on each compartment instead of using multi-well deconvolution on the field as a whole. The pore volume of each such compartment is reflected in the late time pressure behavior of the respective drawdown response associated with the well data. The sum of these individual pore volumes per well in the field yields the total pore volume connected to the wells that is supported by the reservoir dynamic behavior. These insights are reinforced by the use of synthetic models to provide clarity and understanding of the drainage compartment theory used during Corrib analysis.


2008 ◽  
Vol 12 (6) ◽  
pp. 953-979 ◽  
Author(s):  
Fernando Peña ◽  
Paulo B. Lourenço ◽  
Alfredo Campos-Costa

Sign in / Sign up

Export Citation Format

Share Document