Offshore Implementation of Temperature Microchip Under Critical Well Conditions

2021 ◽  
Author(s):  
Bodong Li ◽  
Vahid Dokhani ◽  
Chinthaka Gooneratne ◽  
Guodong Zhan ◽  
Zhaorui Shi

Abstract Drilling microchips are millimeter-size sensing devices, capable of measuring in-situ downhole temperature, and at the same time, withstanding harsh downhole conditions. In this work, 140 microchips were dropped from the drill pipe during the connections. The devices travel through the bottomhole assembly (BHA), drill bit, annulus, and eventually get recovered at the shale shaker. A total of 80 microchips were recovered at the shaker, which resulted in a physical recovery rate of 57%. The microchip recorded the dynamic temperature profile of the entire wellbore including a long openhole section only a few hours before the well turned into total loss. The data downloaded from the microchip shows an excellent consistency throughout the three tests. The measured dynamic bottomhole temperature provides a correction of 10 deg F to the best practice of the industry in terms of downhole thermal simulation, offering valuable measured input for the optimization of thermal activated LCMs or cementing job. To our best knowledge, it is the industry's first successful attempt in logging an openhole section in a highly loss zone. The microchip recorded the dynamic temperature profile of a long open hole only a few hours before the well turned into a total loss. Due to the lack of industrial solutions for downhole temperature measurement under such conditions, the microchip technology showed unique advantage for critical applications, especially in operations with highly valued assets.

2021 ◽  
Author(s):  
Abdullah Abu-Eida ◽  
Salem Al-Sabea ◽  
Milan Patra ◽  
Bader Akbar ◽  
Kutbuddin Bhatia ◽  
...  

Abstract The Minagish field in West Kuwait is a high potential field which poses several challenges in terms of hydrocarbon flow assurance through highly depleted tight carbonate intervals with uneven reservoir quality and curtailed mobility. These conditions have shifted the field development from vertical to horizontal wellbore completions. Achieving complete wellbore coverage is a challenge for any frac treatment performed in a long openhole lateral with disparities in reservoir characteristics. The fluid will flow into the path of least resistance leaving large portions of the formation untreated. As a result, economic fracturing treatment options dwindle significantly, thus reservoir stimulation results are not always optimum. A multistage fracturing technique using Integrated Dynamic Diversion (IDD) has been performed first time in West Kuwait field well. The process uses active fluid energy to divert flow into a specific fracture point in the lateral, which can initiate and precisely place a fracture. The process uses two self-directed fluid streams: one inside the pipe and one in the annulus. The process mixes the two fluids downhole with high energy to form a consistent controllable mixture. The technique includes pinpoint fluid jetting at the point of interest, followed by in-situ HCL based crosslinked systems employed for improving individual stage targets. The IDD diversion shifts the fracture to unstimulated areas to create complex fractures which increases reservoir contact volume and improved overall conductivity in the lateral. The kinetic and chemical diversion of the IDD methodology is highly critical to control fluid loss in depleted intervals and results in enhanced stimulation. Pumping a frac treatment in openhole without control would tend to initiate a longitudinal fracture along the wellbore and may restrict productivity. By using specialized completion tools with nozzles at the end of the treating string, a new pinpoint process has been employed to initiate a transverse fracture plane in IDD applications. Proper candidate selection and fluid combination with in-situ crosslink acid effectively plug the fracture generated previously and generate pressure high enough to initiate another fracture for further ramification. By combining these processes into one continuous operation, the use of wireline/coiled tubing for jetting, plug setting and milling is eliminated, making the new multistage completion technology economical for these depleted wells. The application of the IDD methodology is a fit-for-purpose solution to address the unique challenges of openhole operations, formation technical difficulties, high-stakes economics, and untapped high potential from intermittent reservoirs. The paper will present post-operation results of this completion from all fractured zones along the lateral and will describe the lessons learned in implementation of this methodology which can be considered as best practice for application in similar challenges in other fields.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianan Li ◽  
Heping Xie ◽  
Ling Chen ◽  
Cong Li ◽  
Zhiqiang He

Exploration of deep-rock mechanics has a significant influence on the techniques of mining and rock mechanics. Rock coring technique is the basic method for all rock mechanics study. With the increase of the drilling depth and increasing strength of the hard rock, how to obtain high-quality rock core through various coring techniques is an eternal work. Here an innovative method is applied to design the new coring system to maximize the efficiency of operation. The stress conditions or parameters of rock core in the coring are analyzed, and the mechanism of the core with in situ stress is shown in this paper. The conflict of the core and coring tool chamber is proposed for the innovative design. The innovative design method is fulfilled by the theory of inventive problem solving (TRIZ). An improved coring system for the full-length core with in situ stress was obtained with the solutions of improved coring mechanism, cutting mechanism, and spiral drill pipe.


2020 ◽  
Vol 244 ◽  
pp. 106932
Author(s):  
Guang-Bing Yang ◽  
Quanan Zheng ◽  
Xiaomin Hu ◽  
De-Jing Ma ◽  
Zhao Chen ◽  
...  

2019 ◽  
Author(s):  
Simona Costin ◽  
Richard Smith ◽  
Yanguang Yuan ◽  
Dragan Andjelkovic ◽  
Gabriel Garcia Rosas

2020 ◽  
Author(s):  
Emma Woolliams ◽  
Paola Fisicaro ◽  
Nigel Fox ◽  
Céline Pascale ◽  
Steffen Seitz ◽  
...  

<div> <p>Environmental observations of essential climate variables (ECVs) and related quantities made by satellites and in situ observational networks are used for a wide range of societal applications. To identify a small climate trend from an observational record that is also sensitive to changes in weather, to seasonal effects and to geophysical processes, it is essential that observations have a stable basis that holds for multiple decades, whilst still allowing for changes in the observation instrumentation and operational procedures. To achieve this, all aspects of data collection and handling must be underpinned by robust quality assurance. The resultant data should also be linked to a common reference, with well-understood uncertainty analysis, so that observations are interoperable and coherent; in other words, measurements by different organisations, different instruments and different techniques should be able to be meaningfully combined and compared.    </p> </div><div> <p>Metrology, the science of measurement, can provide a critical role in enabling robust, interoperable and stable observational records and can aid users in judging the fitness-for-purpose of such records. In addition to Global Climate Observing System (GCOS) monitoring principles, metrology’s value, and the role of National Metrology Institutes (NMI) in observations, has been recognised in initiatives such as the Quality Assurance Framework for Earth Observation (QA4EO) established by the Committee on Earth Observation Satellites (CEOS) and in the implementation plans of the World Meteorological Organization’s (WMO’s), Global Atmosphere Watch and the European Ocean Observing System.  </p> </div><div> <p>The European Association for National Metrology Institutes (EURAMET) has recently created the “European Metrology Network (EMN) for Climate and Ocean Observation” to support further engagement of the expert communities with metrologists at national metrology insitutes and to encourage Europe’s metrologists to coordinate their research in response to community needs. The EMN has a scope that covers metrological support for in situ and remote sensing observations of atmosphere, land and ocean ECVs (and related parameters) for climate applications. It also covers the additional economic and ecological applications of ocean Essential Ocean Variable (EOV) observations. It is the European contribution to a global effort to further enhance metrological best practice into such observations through targeted research efforts.  </p> </div><div> <p>In late 2019 and early 2020 the EMN carried out a survey to identify the need for metrology within the observational communities and held a webinar workshop to prioritise the identified needs. Here we present the results of the survey and discuss the role that metrology can play in the climate observing system of the future. </p> </div>


Author(s):  
Jenna Khan ◽  
Joshua A. Lieberman ◽  
Christina M. Lockwood

Abstract:microRNAs (miRNAs) hold promise as biomarkers for a variety of disease processes and for determining cell differentiation. These short RNA species are robust, survive harsh treatment and storage conditions and may be extracted from blood and tissue. Pre-analytical variables are critical confounders in the analysis of miRNAs: we elucidate these and identify best practices for minimizing sample variation in blood and tissue specimens. Pre-analytical variables addressed include patient-intrinsic variation, time and temperature from sample collection to storage or processing, processing methods, contamination by cells and blood components, RNA extraction method, normalization, and storage time/conditions. For circulating miRNAs, hemolysis and blood cell contamination significantly affect profiles; samples should be processed within 2 h of collection; ethylene diamine tetraacetic acid (EDTA) is preferred while heparin should be avoided; samples should be “double spun” or filtered; room temperature or 4 °C storage for up to 24 h is preferred; miRNAs are stable for at least 1 year at –20 °C or –80 °C. For tissue-based analysis, warm ischemic time should be <1 h; cold ischemic time (4 °C) <24 h; common fixative used for all specimens; formalin fix up to 72 h prior to processing; enrich for cells of interest; validate candidate biomarkers with in situ visualization. Most importantly, all specimen types should have standard and common workflows with careful documentation of relevant pre-analytical variables.


1999 ◽  
Vol 2 (02) ◽  
pp. 125-133 ◽  
Author(s):  
M.N. Hashem ◽  
E.C. Thomas ◽  
R.I. McNeil ◽  
Oliver Mullins

Summary Determination of the type and quality of hydrocarbon fluid that can be produced from a formation prior to construction of production facilities is of equal economic importance to predicting the fluid rate and flowing pressure. We have become adept at making such estimates for formations drilled with water-based muds, using open-hole formation evaluation procedures. However, these standard open-hole methods are somewhat handicapped in wells drilled with synthetic oil-based mud because of the chemical and physical similarity between the synthetic oil-based filtrate and any producible oil that may be present. Also complicating the prediction is that in situ hydrocarbons will be miscibly displaced away from the wellbore by the invading oil-based mud filtrate, leaving little or no trace of the original hydrocarbon in the invaded zone. Thus, normal methods that sample fluids in the invaded zone will be of little use in predicting the in situ type and quality of hydrocarbons deeper in the formation. Only when we can pump significant volume of filtrate from the invaded zone to reconnect and sample the virgin fluids are we successful. However, since the in situ oil and filtrate are miscible, diffusion mixes the materials and blurs the interface; as mud filtrate is pumped from the formation into the borehole, the degree of contamination is greater than one might expect, and it is difficult to know when to stop pumping and start sampling. What level of filtrate contamination in the in situ fluid is tolerable? We propose a procedure for enhancing the value of the data derived from a particular open-hole wireline formation tester by quantitatively evaluating in real time the quality of the fluid being collected. The approach focuses on expanding the display of the spectroscopic data as a function of time on a more sensitive scale than has been used previously. This enhanced sensitivity allows one to confidently decide when in the pumping cycle to begin the sampling procedure. The study also utilizes laboratory determined PVT information on collected samples to form a data set that we use to correlate to the wireline derived spectroscopic data. The accuracy of these correlations has been verified with subsequent predictions and corroborated with laboratory measurements. Lastly, we provide a guideline for predicting the pump-out time needed to obtain a fluid sample of a pre-determined level of contamination when sampling conditions fall within our range of empirical data. Conclusions This empirical study validates that PVT quality hydrocarbon samples can be obtained from boreholes drilled with synthetic oil-based mud utilizing wireline formation testers deployed with downhole pump-out and optical analyzer modules. The data set for this study has the following boundary conditions: samples were obtained in the Gulf of Mexico area; the rock formations are unconsolidated to slightly consolidated, clean to slightly shaly sandstones; the in situ hydrocarbons and the synthetic oil-based mud filtrate have measurable differences in their visible and/or near infrared spectra. Specifically, this study demonstrates that during the pump-out phase of operations we can use the optical analyzer response to predict the API gravity and gas/oil ratio of the reservoir hydrocarbons prior to securing a downhole sample. Additionally, we can predict the pump out time required to obtain a reservoir sample with less than 10% mud filtrate contamination if we know or can estimate reservoir fluid viscosity and formation permeability. Extension of this method to other formations and locales should be possible using similar empirical correlation methodology. Introduction The high cost of offshore production facilities construction and deployment require accurate prediction of hydrocarbon PVT properties prior to fabrication. In the offshore Gulf of Mexico, one method to obtain a PVT quality hydrocarbon sample is to use a cased hole drill stem test. However, this procedure is usually quite costly due to the need for sand control. Shell has been an advocate of eliminating this costly step by utilizing openhole wireline test tools to obtain the PVT quality sample of the reservoir hydrocarbon. The success of this approach depends upon the availability of a wireline tool with a downhole pump that permits removal of the mud filtrate contamination prior to sampling the reservoir fluids, and a downhole fluid analyzer that can distinguish reservoir fluid from filtrate. One such tool is the Modular Formation Dynamics Tester (MDT).1 The optical fluid analyzer module of the MDT functions by subjecting the fluids being pumped to absorption spectroscopy in the visible and near-infrared (NIR) ranges. Interpretation of these spectra is the subject of this paper. Tool descriptions and basic theory of operations were presented in an earlier text.2 The concept of using visible and/or NIR spectroscopy to characterize the fluids being sampled while pumping is straightforward when there are measurable differences in the spectra of the mud filtrate and the reservoir hydrocarbons. As shown in Fig. 1, there are well known areas3,4 of the NIR spectrum (800-2000 nm) that are diagnostic of water and oil. The optical fluid analyzer module (OFA) of the MDT has channels tuned at 10 locations as indicated in Fig. 1, and thus the response in channels 6, 8, and 9 can be used to discern water from hydrocarbon. Another section of the OFA is designed to detect gas by measuring reflected polarized light from the pumped fluids, but we do not discuss its operation further except to say that it is a reliable gas indicator.


Sign in / Sign up

Export Citation Format

Share Document