Determination of Producible Hydrocarbon Type and Oil Quality in Wells Drilled With Synthetic Oil-Based Muds

1999 ◽  
Vol 2 (02) ◽  
pp. 125-133 ◽  
Author(s):  
M.N. Hashem ◽  
E.C. Thomas ◽  
R.I. McNeil ◽  
Oliver Mullins

Summary Determination of the type and quality of hydrocarbon fluid that can be produced from a formation prior to construction of production facilities is of equal economic importance to predicting the fluid rate and flowing pressure. We have become adept at making such estimates for formations drilled with water-based muds, using open-hole formation evaluation procedures. However, these standard open-hole methods are somewhat handicapped in wells drilled with synthetic oil-based mud because of the chemical and physical similarity between the synthetic oil-based filtrate and any producible oil that may be present. Also complicating the prediction is that in situ hydrocarbons will be miscibly displaced away from the wellbore by the invading oil-based mud filtrate, leaving little or no trace of the original hydrocarbon in the invaded zone. Thus, normal methods that sample fluids in the invaded zone will be of little use in predicting the in situ type and quality of hydrocarbons deeper in the formation. Only when we can pump significant volume of filtrate from the invaded zone to reconnect and sample the virgin fluids are we successful. However, since the in situ oil and filtrate are miscible, diffusion mixes the materials and blurs the interface; as mud filtrate is pumped from the formation into the borehole, the degree of contamination is greater than one might expect, and it is difficult to know when to stop pumping and start sampling. What level of filtrate contamination in the in situ fluid is tolerable? We propose a procedure for enhancing the value of the data derived from a particular open-hole wireline formation tester by quantitatively evaluating in real time the quality of the fluid being collected. The approach focuses on expanding the display of the spectroscopic data as a function of time on a more sensitive scale than has been used previously. This enhanced sensitivity allows one to confidently decide when in the pumping cycle to begin the sampling procedure. The study also utilizes laboratory determined PVT information on collected samples to form a data set that we use to correlate to the wireline derived spectroscopic data. The accuracy of these correlations has been verified with subsequent predictions and corroborated with laboratory measurements. Lastly, we provide a guideline for predicting the pump-out time needed to obtain a fluid sample of a pre-determined level of contamination when sampling conditions fall within our range of empirical data. Conclusions This empirical study validates that PVT quality hydrocarbon samples can be obtained from boreholes drilled with synthetic oil-based mud utilizing wireline formation testers deployed with downhole pump-out and optical analyzer modules. The data set for this study has the following boundary conditions: samples were obtained in the Gulf of Mexico area; the rock formations are unconsolidated to slightly consolidated, clean to slightly shaly sandstones; the in situ hydrocarbons and the synthetic oil-based mud filtrate have measurable differences in their visible and/or near infrared spectra. Specifically, this study demonstrates that during the pump-out phase of operations we can use the optical analyzer response to predict the API gravity and gas/oil ratio of the reservoir hydrocarbons prior to securing a downhole sample. Additionally, we can predict the pump out time required to obtain a reservoir sample with less than 10% mud filtrate contamination if we know or can estimate reservoir fluid viscosity and formation permeability. Extension of this method to other formations and locales should be possible using similar empirical correlation methodology. Introduction The high cost of offshore production facilities construction and deployment require accurate prediction of hydrocarbon PVT properties prior to fabrication. In the offshore Gulf of Mexico, one method to obtain a PVT quality hydrocarbon sample is to use a cased hole drill stem test. However, this procedure is usually quite costly due to the need for sand control. Shell has been an advocate of eliminating this costly step by utilizing openhole wireline test tools to obtain the PVT quality sample of the reservoir hydrocarbon. The success of this approach depends upon the availability of a wireline tool with a downhole pump that permits removal of the mud filtrate contamination prior to sampling the reservoir fluids, and a downhole fluid analyzer that can distinguish reservoir fluid from filtrate. One such tool is the Modular Formation Dynamics Tester (MDT).1 The optical fluid analyzer module of the MDT functions by subjecting the fluids being pumped to absorption spectroscopy in the visible and near-infrared (NIR) ranges. Interpretation of these spectra is the subject of this paper. Tool descriptions and basic theory of operations were presented in an earlier text.2 The concept of using visible and/or NIR spectroscopy to characterize the fluids being sampled while pumping is straightforward when there are measurable differences in the spectra of the mud filtrate and the reservoir hydrocarbons. As shown in Fig. 1, there are well known areas3,4 of the NIR spectrum (800-2000 nm) that are diagnostic of water and oil. The optical fluid analyzer module (OFA) of the MDT has channels tuned at 10 locations as indicated in Fig. 1, and thus the response in channels 6, 8, and 9 can be used to discern water from hydrocarbon. Another section of the OFA is designed to detect gas by measuring reflected polarized light from the pumped fluids, but we do not discuss its operation further except to say that it is a reliable gas indicator.

2011 ◽  
Vol 17 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Nada Babovic ◽  
Dejan Markovic ◽  
Vojkan Dimitrijevic ◽  
Dragan Markovic

This paper shows the results obtained in field analysis performed at the Tamis River, starting from the settlement Jasa Tomic - border between Serbia and Romania to Pancevo - confluence of Tamis into the Danube. The Tamis is a 359 km long river rising in the southern Carpathian Mountains. It flows through the Banat region and flows into the Danube near Pancevo. During the years the water quality of the river has severely deteriorated and badly affected the environment and the river ecosystem. In situ measurements enabled determination of physico-chemical parameters of water quality of the Tamis River on every 400 m of the watercourse, such as: water temperature, pH value, electrical conductivity, contents of dissolved oxygen and oxygen saturation. The main reason of higher pollution of Tamis is seen in connection to DTD hydro system. Sampling was performed at 7 points with regard to color, turbidity, total hardness, alkalinity, concentration of ammonium nitrogen, nitrite nitrogen, nitrate nitrogen, iron, chlorides and sulphates in samples. The aim of the present work was to evaluate water quality in the Tamis River taking into account significant pollution, which originates from settlements, industry and agriculture, and to suggest appropriate preventive measures to further pollution decreasing of the river's water.


2015 ◽  
Vol 12 (15) ◽  
pp. 4621-4635 ◽  
Author(s):  
T. Tagesson ◽  
R. Fensholt ◽  
S. Huber ◽  
S. Horion ◽  
I. Guiro ◽  
...  

Abstract. This paper investigates how hyperspectral reflectance (between 350 and 1800 nm) can be used to infer ecosystem properties for a semi-arid savanna grassland in West Africa using a unique in situ-based multi-angular data set of hemispherical conical reflectance factor (HCRF) measurements. Relationships between seasonal dynamics in hyperspectral HCRF and ecosystem properties (biomass, gross primary productivity (GPP), light use efficiency (LUE), and fraction of photosynthetically active radiation absorbed by vegetation (FAPAR)) were analysed. HCRF data (ρ) were used to study the relationship between normalised difference spectral indices (NDSIs) and the measured ecosystem properties. Finally, the effects of variable sun sensor viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the strongest correlation to seasonal dynamics in ecosystem properties were shortwave infrared (biomass), the peak absorption band for chlorophyll a and b (at 682 nm) (GPP), the oxygen A band at 761 nm used for estimating chlorophyll fluorescence (GPP and LUE), and blue wavelengths (ρ412) (FAPAR). The NDSI with the strongest correlation to (i) biomass combined red-edge HCRF (ρ705) with green HCRF (ρ587), (ii) GPP combined wavelengths at the peak of green reflection (ρ518, ρ556), (iii) LUE combined red (ρ688) with blue HCRF (ρ436), and (iv) FAPAR combined blue (ρ399) and near-infrared (ρ1295) wavelengths. NDSIs combining near infrared and shortwave infrared were strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data for validation of Earth-observation-based properties of semi-arid ecosystems, as well as insights for designing spectral characteristics of future sensors for ecosystem monitoring.


2010 ◽  
Vol 25 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Mark A. Rodriguez ◽  
Mark H. Van Benthem ◽  
David Ingersoll ◽  
Sven C. Vogel ◽  
Helmut M. Reiche

The electrochemical reaction behavior of a commercial Li-ion battery (LiFePO4-based cathode, graphite-based anode) has been measured via in situ neutron diffraction. A multivariate analysis was successfully applied to the neutron diffraction data set facilitating in the determination of Li bearing phases participating in the electrochemical reaction in both the anode and cathode as a function of state-of-charge (SOC). The analysis resulted in quantified phase fraction values for LiFePO4 and FePO4 cathode compounds as well as the identification of staging behavior of Li6, Li12, Li24, and graphite phases in the anode. An additional Li-graphite phase has also been tentatively identified during electrochemical cycling as LiC48 at conditions of ∼5% to 15% SOC.


2005 ◽  
Vol 13 ◽  
pp. 729-729
Author(s):  
Akira Fujiwara ◽  
Masanao Abe ◽  
Hajime Yano

MUSES-C is launched in May 2003, and arrives in the vicinity of a near-Earth asteroid (25143)1998 SF36 in June 2005. The spectral type is S and its diameter is 300-600 m. During four months stay multi-band imaging, near-infrared spectra, and X-ray spectra will be taken at the nominal altitude of about 6km above the asteroid surface.. Sampling of the surface material will be made at two different locations. The total mass collected will be about 1 g. A miniature hopping lander on which imaging cameras are boarded will be dropped onto the surface. The sample will be returned to the earth in June 2007. These methods, the close-up global observation from the spacecraft, in situ observation from the lander, and detailed analysis of the returned sample, can, as well as ground-based observation of the targeted asteroid, provide information of surface material distribution in various scales, and also provide powerful benchmarks to interpretation of spectroscopic data obtained through ground-based observation of S-type asteroids.


2005 ◽  
Vol 38 (2) ◽  
pp. 396-397 ◽  
Author(s):  
Nobuhisa Watanabe

The modification and use of the Nextal crystallization device for checking the diffraction quality of protein crystalsin situis described. Using the modified device, crystals in the crystallization drop can be exposed to X-rays directly to observe the diffraction quality without physical damage to the crystal. If the crystals in the drop are well separated, not only the resolution limit of the crystal is estimated, but also determination of the space group and the cell parameters is possible.


2018 ◽  
Vol 6 (19) ◽  
pp. 5161-5170 ◽  
Author(s):  
Xuejun Zhang ◽  
Shunshuo Cai ◽  
Fu Liu ◽  
Hao Chen ◽  
Peiguang Yan ◽  
...  

In situ determination of the complex permittivity of H2-infused palladium using near infrared plasmons over optical fibers.


2012 ◽  
Vol 2 (3) ◽  
pp. 172-187 ◽  
Author(s):  
J. Reinking ◽  
A. Härting ◽  
L. Bastos

AbstractWith the growing global efforts to estimate the influence of civilization on the climate change it would be desirable to survey sea surface heights (SSH) not only by remote sensing techniques like satellite altimetry or (GNSS) Global Navigation Satellite System reflectometry but also by direct and in-situ measurements in the open ocean. In recent years different groups attempted to determine SSH by ship-based GNSS observations. Due to recent advances in kinematic GNSS (PPP) Precise Point Positioning analysis it is already possible to derive GNSS antenna heights with a quality of a few centimeters. Therefore it is foreseeable that this technique will be used more intensively in the future, with obvious advantages in sea positioning. For the determination of actual SSH from GNSS-derived antenna heights aboard seagoing vessels some essential hydrostatic and hydrodynamic corrections must be considered in addition to ocean dynamics and related corrections. Systematic influences of ship dynamics were intensively analyzed and sophisticated techniques were developed at the Jade University during the last decades to precisely estimate mandatory corrections. In this paper we will describe the required analyses and demonstrate their application by presenting a case study from an experiment on a cruise vessel carried out in March 2011 in the Atlantic Ocean.


Sign in / Sign up

Export Citation Format

Share Document