Predicting Dysfunction Vibration Events while Drilling Using LSTM Recurrent Neural Networks

2021 ◽  
Author(s):  
Narendra Vishnumolakala ◽  
Dean Michael Murphy ◽  
Thu Nguyen ◽  
Enrique Zarate Losoya ◽  
Vivekvardhan Reddy Kesireddy ◽  
...  

Abstract The objective of the study is to build a robust Recurrent Neural Network system using Long-Short-Term-Memory (LSTM) to predict future vibrations during drilling operations. This provides a reliable solution to the complex problem of modeling several forms of vibrations encountered downhole. This accurate prediction system can be readily integrated into advisory/warning systems giving drillers the potential to save time, improve safety, and increase efficiency in drilling operations. High-frequency downhole drilling data onshore fields, obtained from a major O&G service provider, was used to train and validate the models. First, multiple classification algorithms such as Logistic Regression, KNN, Decision Trees, Random Forest were utilized to identify the presence and severity of Stickslip, Whirl, and other drill-string vibrations. LSTM-RNN was then used instead of traditional RNN intended for sequential data, to resolve the vanishing gradient problem. LSTM-RNN architecture was built to predict vibrations a)10 seconds and b) 30 seconds into the future. Results of the traditional classification models confirmed the hypothesis that dysfunctions can be successfully identified based on real-time downhole drilling data. 98% accuracy was obtained in successfully identifying torsional vibrations during drilling. A total of 101 parameters including measured and derived variables are available in the dataset. Modeling was performed with 14 features and vibrations were predicted. The RNN model was trained on data from multiple wells that encountered vibrations during drilling. The models were able to predict vibrations 10 seconds into the future with an MSE of 0.02 and 30 seconds into the future with reasonable accuracy and MSE of 0.10. Avoiding excessive vibrations will result in fewer trips by increasing longevity and reducing malfunctions of downhole electronics, the drill-string, and the BHA. Reduced NPT means drilling complex wells efficiently in less time which in turn directly translates to lower costs for the company. In addition to significant cost benefits, automated technology predicting anomalies and reacting in real-time translates to improved safety because it would now require fewer operators at risk on the rig floor. The work opens up avenues for a sophisticated advisory/warning system and effective ‘look-ahead’ drilling processes in the future.

2020 ◽  
Vol 39 (6) ◽  
pp. 422-429
Author(s):  
Andrey Bakulin ◽  
Ali Aldawood ◽  
Ilya Silvestrov ◽  
Emad Hemyari ◽  
Flavio Poletto

Advanced geophysical sensing while drilling is being driven by trends to automate and optimize drilling and the desire to better characterize complex near surface and overburden in desert environments. We introduce the DrillCAM system, which combines a set of geophysical techniques from seismic while drilling (SWD), drill-string vibration health, estimation of formation properties at the bit, and imaging ahead of and around the bit. We present data acquisition, processing, and initial application results from the first field trial on an onshore well in a desert environment. In this study, we focus on SWD applications. For the first time, wireless geophones installed around a rig were used to acquire continuous data while drilling. We demonstrate the feasibility of such a system to provide flexible acquisition geometries that are easily expandable with increasing bit depth without interference from drilling operations. Using a top-drive sensor as a pilot, we transform the drill-bit noise into meaningful and reliable seismic signals. The data were used to retrieve a check shot while drilling, make kinematic look-ahead predictions, and obtain a vertical seismic profiling corridor stack matching surface seismic. Robust near-offset check-shot signals were received from roller-cone and polycrystalline diamond compact (PDC) bits above 7200 ft after limited preprocessing of challenging single-sensor data with supergrouping. Detecting signals from deeper sections drilled with PDC bits may require more advanced processing by using an entire 2D spread of wireless geophones and downhole pilots. The real-time capabilities of the system make the data available for continuous data processing and interpretation that will facilitate drilling automation and improve real-time decision making.


2021 ◽  
Author(s):  
S. H. Al Gharbi ◽  
A. A. Al-Majed ◽  
A. Abdulraheem ◽  
S. Patil ◽  
S. M. Elkatatny

Abstract Due to high demand for energy, oil and gas companies started to drill wells in remote areas and unconventional environments. This raised the complexity of drilling operations, which were already challenging and complex. To adapt, drilling companies expanded their use of the real-time operation center (RTOC) concept, in which real-time drilling data are transmitted from remote sites to companies’ headquarters. In RTOC, groups of subject matter experts monitor the drilling live and provide real-time advice to improve operations. With the increase of drilling operations, processing the volume of generated data is beyond a human's capability, limiting the RTOC impact on certain components of drilling operations. To overcome this limitation, artificial intelligence and machine learning (AI/ML) technologies were introduced to monitor and analyze the real-time drilling data, discover hidden patterns, and provide fast decision-support responses. AI/ML technologies are data-driven technologies, and their quality relies on the quality of the input data: if the quality of the input data is good, the generated output will be good; if not, the generated output will be bad. Unfortunately, due to the harsh environments of drilling sites and the transmission setups, not all of the drilling data is good, which negatively affects the AI/ML results. The objective of this paper is to utilize AI/ML technologies to improve the quality of real-time drilling data. The paper fed a large real-time drilling dataset, consisting of over 150,000 raw data points, into Artificial Neural Network (ANN), Support Vector Machine (SVM) and Decision Tree (DT) models. The models were trained on the valid and not-valid datapoints. The confusion matrix was used to evaluate the different AI/ML models including different internal architectures. Despite the slowness of ANN, it achieved the best result with an accuracy of 78%, compared to 73% and 41% for DT and SVM, respectively. The paper concludes by presenting a process for using AI technology to improve real-time drilling data quality. To the author's knowledge based on literature in the public domain, this paper is one of the first to compare the use of multiple AI/ML techniques for quality improvement of real-time drilling data. The paper provides a guide for improving the quality of real-time drilling data.


Author(s):  
Mazeda Tahmeen ◽  
Geir Hareland ◽  
Bernt S. Aadnoy

The increasing complexity and higher drilling cost of horizontal wells demand extensive research on software development for the analysis of drilling data in real-time. In extended reach drilling, the downhole weight on bit (WOB) differs from the surface seen WOB (obtained from on an off bottom hookload difference reading) due to the friction caused by drill string movement and rotation in the wellbore. The torque and drag analysis module of a user-friendly real-time software, Intelligent Drilling Advisory system (IDAs) can estimate friction coefficient and the effective downhole WOB while drilling. IDAs uses a 3-dimensional wellbore friction model for the analysis. Based on this model the forces applied on a drill string element are buoyed weight, axial tension, friction force and normal force perpendicular to the contact surface of the wellbore. The industry standard protocol, WITSML (Wellsite Information Transfer Standard Markup Language) is used to conduct transfer of drilling data between IDAs and the onsite or remote WITSML drilling data server. IDAs retrieves real-time drilling data such as surface hookload, pump pressure, rotary RPM and surface WOB from the data servers. The survey data measurement for azimuth and inclination versus depth along with the retrieved drilling data, are used to do the analysis in different drilling modes, such as lowering or tripping in and drilling. For extensive analysis the software can investigate the sensitivity of friction coefficient and downhole WOB on user-defined drill string element lengths. The torque and drag analysis module, as well as the real-time software, IDAs has been successfully tested and verified with field data from horizontal wells drilled in Western Canada. In the lowering mode of drilling process, the software estimates the overall friction coefficient when the drill bit is off bottom. The downhole WOB estimated by the software is less than the surface measurement that the drillers used during drilling. The study revealed verification of the software by comparing the estimated downhole WOB with the downhole WOB recorded using a downhole measuring tool.


2021 ◽  
Author(s):  
Megha Chakraborty ◽  
Georg Rümpker ◽  
Horst Stöcker ◽  
Wei Li ◽  
Johannes Faber ◽  
...  

<p>This study attempts to use Deep Learning architectures to design an efficient real time magnitude classifier for seismic events. Various combinations of Convolutional Neural Networks (CNNs) and Bi- & Uni-directional Long-Short Term Memory (LSTMs) and Gated Recurrent Unit (GRUs) are tried and tested to obtain the best performing model with optimum hyperparameters. In order to extract maximum information from the seismic waveforms, this study uses not only the time series data but also its corresponding Fourier Transform (spectrogram) as input. Furthermore, the Deep Learning architecture is combined with other machine learning algorithms to generate the final magnitude classifications. This study is likely to help seismologists in improving the Earthquake Early Warning System to avoid issuing false warnings, which not only alarms people unnecessarily but can also result in huge financial losses due to stoppage of industrial machinery etc.</p>


2021 ◽  
Author(s):  
Trieu Phat Luu ◽  
John A.R. Bomidi ◽  
Arturo Magana-Mora ◽  
Alawi Alalsayednassir ◽  
Guodong David Zhan

Abstract Drilling operations rely on learned expertise in monitoring the drilling performance data and the rock data to assess the dull condition of the drill bit. While human learning can subjectively pick up the indicators based on rig surface data streams, this information is highly convoluted with changes in rock and drilling data. Recent approaches for bit wear estimation also include model-based and traditional supervised machine learning methods, which are usually costly and time-consuming. In this study, we developed a bi-directional long short-term memory-based variational autoencoder (biLSTM-VAE) to project raw drilling data into a latent space in which the real-time bit-wear can be estimated. The proposed deep neural network was trained in an unsupervised manner, and the bit-wear estimation is demonstrated as an end-to-end process.


2021 ◽  
Author(s):  
Børge Engdal Nygård ◽  
Espen Andreassen ◽  
Jørn Andre Carlsen ◽  
Gunn Åshild Ulfsnes ◽  
Steinar Øksenvåg ◽  
...  

Abstract Over the last few years, multiple wells have been drilled in the Norwegian Continental Shelf (NCS) and the United Kingdom Continental Shelf (UKCS) using wired drill pipe (WDP). This paper captures highlights from using real-time downhole measurements provided by WDP, for improved drilling operations. It presents learnings on how WDP measurements have been used in the operator's decision process. As part of WDP, along-string measurement subs (ASM) are equipped with temperature, annular/internal pressure, rotation and vibrations sensors. Data is transmitted to surface at high speed and is available in real-time, even when flow is off. The data provide great insight into the hole conditions along the drill string and at the bottom hole assembly (BHA). Based on this insight, drilling parameters at surface can be accurately adjusted, resulting in increased overall efficiency. Large data amounts can be communicated to and from surface with negligible time delay and independent from fluid circulation. Displaying the downhole measurements in real-time, both at the rig site and in remote operations centers has proven essential when optimising well construction activities. All parties need to access the same information in real-time. Moreover, the data need to be presented in an intuitive manner that enable improved operational decisions. To maximize WDP values, the Operator has learned that downhole data must be used to adjust drilling operations in real-time.


2021 ◽  
Author(s):  
Yujin Nakagawa ◽  
Tomoya Inoue ◽  
Hakan Bilen ◽  
Konda R. Mopuri ◽  
Keisuke Miyoshi ◽  
...  

Abstract Pipe-sticking during drilling operations causes severe difficulties, including economic losses and safety issues. Therefore, real-time stuck-pipe predictions are an important tool to preempt this problem and avoid the aforementioned troubles. In this study, we have developed a prediction technique based on artificial intelligence, in collaboration with industry, the government, and academia. This technique was developed by combining an unsupervised learning model built using an encoder-decoder, long short-term memory architecture, with a relative error function. The model was trained with the time series data of normal drilling operations and based on an important hypothesis: reconstruction errors between observed and predicted values are higher around the time of pipe sticking than during normal drilling operations. An evaluation method of stuck-pipe possibilities using a relative error function reduced false predictors caused by large variations of drilling parameters. The prediction technique was then applied to 34 actual stuck-pipe events, where it was found that reconstruction errors calculated with the relative error function increased 0.5-10 hours prior to the pipe sticking for 17 out of 34 stuck-pipe events (thereby partly confirming our hypothesis).


Author(s):  
Viswanth Ramba ◽  
Senthil Selvaraju ◽  
Senthilmurugan Subbaih ◽  
Muthukumar Palanisamy ◽  
Sanjaykumar Gauba ◽  
...  

Abstract The actual forces acting on the drill string in directional drilling is relatively complex than vertical drilling. In this work, the different forces acting on the drill string during directional drilling are analyzed using actual drilling data. The calculation of such forces can help driller to predict downhole complications that are caused due to drill string failures. The estimation of effective tension force at the top of the drill string requires both true tension forces and buckling stability forces acting on the drill string. True tension is a function of weight component of the drill string, the forces acting on BHA due to change in cross-sectional area and bottom pressure force acting on the drill bit and the drag forces acting on the string. The buckling stability force is defined as the difference between the internal and external force acting on the drill string. The effective tension is used to calculate the hookload and normal forces acting on the drill string. The calculation of the hookload at the deadline can help the driller to compare with actual hookload and take corrective action before the complication occurs. Further, that requires the relationship between the effective tension force at the top of the drill string and the hookload measured at the deadline. Such a relationship can be established by knowing the efficiency of the rig components such as sheave, block and tackle system, hydraulic lines and weight parameter for remaining components. Considering the unavailability of the efficiency of these components, the following model parameters are introduced: sheave efficiency, correction factor for efficiency of block and tackle system, hydraulic lines and weight parameter for the remaining components. All the three parameters are estimated by tuning the model with actual directional drilling data. In another aspect, the true tension is used to locate the position of neutral point by calculating the axial stress along the drill string. The proposed model is capable of predicting the hookload at the deadline, position of neutral point and normal forces acting along the drill string. The abnormal behavior of the normal forces along the drill string is used to locate the key-seating zones. Further, the model is validated with actual directional drilling data and successfully implemented in real-time monitoring platform and the model is found to be capable of predicting downhole complications such as drill string parting and improper hole cleaning. This study is expected to provide theoretical bases for understanding the stability regions of directional well.


2021 ◽  
Author(s):  
Yunlai Yang ◽  
Wei Li ◽  
Fahd A. Almalki ◽  
Maher I. Almarhoon

Abstract Real time lithological information at the drill bit is required for some important drilling operations, such as geo-steering and casing shoe positioning. This paper presents a novel tool "Petro-phone" for recording and processing drill bit sounds, which are generated by the drill bit cutting the rock, in order to provide real time lithological information for the rock at the drill bit. A prototype and a preliminary professional version of Petro-phone have been developed and field trialed. Petro-phone is a surface tool with its acoustic sensors attached to the top drive of a drill rig at some strategical locations for maximally picking up drill bit sounds. The drill bit sounds generated at the drill bit transmit along drill string and drive shaft to reach to the acoustic sensors. Since all the parts along the drill bit sound transmission pathway are made of steel, the drill bit sounds transmit efficiently from the source (drill bit) to the sensors. Preliminary results from two field trials show that drill bit sound patterns correlate with lithologies. The results also indicate that a parameter "Apparent Power" of drill bit sounds negatively correlates with gamma log. Due to its true real time nature, Petro-phone potentially has some real time applications, such as geo-steering, casing shoes positioning. Recorded drill bit sound can also potentially be used to derive lithological information, such as lithology type.


Sign in / Sign up

Export Citation Format

Share Document