scholarly journals Optimization of the Bi-Axial Tracking System for a Photovoltaic Platform

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 535
Author(s):  
Cătălin Alexandru

The article deals with the optimization of the azimuthal tracking mechanism for a photovoltaic (PV) platform, which uses linear actuators as actuation elements for both movements (diurnal and elevation). In the case of diurnal movement, where the platform’s angular field of orientation is large, a mechanism with a relatively simple structure is used for amplifying the actuator’s stroke and avoiding the risk of the system locking itself (by limiting the values of the transmission angle). The optimization study targets the mechanical device, the control device, and the bi-axial tracking program (embodied by the laws of motion in time for the platform’s diurnal and elevation angles) with the purpose of obtaining a high input of solar radiation, with a minimal energy consumption to achieve tracking. The study is carried out by using a virtual prototyping platform, which includes Computer Aided Design (CAD), Multi-Body Systems (MBS), and Design for Control (DFC) computer applications. The mechanical and control devices of the solar tracker are integrated and tested in mechatronic concept. The simulations’ results, which were performed for a set of representative days throughout the year, prove the effectiveness of the proposed design.

2021 ◽  
Vol 11 (5) ◽  
pp. 2315
Author(s):  
Yu-Cheng Lo ◽  
Guan-An Chen ◽  
Yin Chun Liu ◽  
Yuan-Hou Chen ◽  
Jui-Ting Hsu ◽  
...  

To improve the accuracy of bracket placement in vivo, a protocol and device were introduced, which consisted of operative procedures for accurate control, a computer-aided design, and an augmented reality–assisted bracket navigation system. The present study evaluated the accuracy of this protocol. Methods: Thirty-one incisor teeth were tested from four participators. The teeth were bonded by novice and expert orthodontists. Compared with the control group by Boone gauge and the experiment group by augmented reality-assisted bracket navigation system, our study used for brackets measurement. To evaluate the accuracy, deviations of positions for bracket placement were measured. Results: The augmented reality-assisted bracket navigation system and control group were used in the same 31 cases. The priority of bonding brackets between control group or experiment group was decided by tossing coins, and then the teeth were debonded and the other technique was used. The medium vertical (incisogingival) position deviation in the control and AR groups by the novice orthodontist was 0.90 ± 0.06 mm and 0.51 ± 0.24 mm, respectively (p < 0.05), and by the expert orthodontist was 0.40 ± 0.29 mm and 0.29 ± 0.08 mm, respectively (p < 0.05). No significant changes in the horizontal position deviation were noted regardless of the orthodontist experience or use of the augmented reality–assisted bracket navigation system. Conclusion: The augmented reality–assisted bracket navigation system increased the accuracy rate by the expert orthodontist in the incisogingival direction and helped the novice orthodontist guide the bracket position within an acceptable clinical error of approximately 0.5 mm.


2014 ◽  
Vol 614 ◽  
pp. 107-112
Author(s):  
Xiao Yu Yin ◽  
Xian Ping Xie ◽  
Zhen Li ◽  
Jian Gong Li ◽  
Ting Jun Wang ◽  
...  

Expert systems, or knowledge based systems, are programs in which the answer to a user-posed question is reached by logical or plausible inference rather than strictly by calculation, although calculation routines can form a major part of an expert system. Based on the integration of expert system technology and optimization technology, an intelligent computer aided design method for mine ventilation systems is proposed in this paper. Firstly, the structure and control algorithm of the intelligent design system are explored. Secondly, the knowledge types required for the mine ventilation expert system and the acquiring method of knowledge are discussed. Finally, the inference method of this expert system is put forward.


2015 ◽  
Vol 764-765 ◽  
pp. 757-761 ◽  
Author(s):  
Yunn Lin Hwang ◽  
Jung Kuang Cheng ◽  
Van Thuan Truong

This paper presents simulation of multibody manufacturing systems with the support of numerical tools. The dynamic and cybernetic characteristics of driving system are discussed. Simple prototype models of robot arm and machine tool’s driving system are quickly established in Computer Aided Design (CAD) software inwhich the whole specification of material, inertia and so on are involved. The prototypes therefore are simulated in RecurDyn- a Computer Aided Engineering (CAE) software. The models are driven by controllers built in Matlab/Simulink via co-simulation. The results are suitable with theory and able to exploied for expansion of complexly effective factors. The research indicates that dynamic analysis and control could be done via numerical method instead of directly dynamic equation creation for multibody manufacturing systems.


2021 ◽  
pp. 1-12
Author(s):  
Ashutosh Dikshit ◽  
Vivek Agnihotri ◽  
Mike Plooy ◽  
Amrendra Kumar ◽  
Seymur Gurbanov ◽  
...  

Summary Integrating a flow control sliding sleeve into a sand screen can provide multiple advantages to the user in controlling the production inflow, but it comes with an increased completion cost as well as an increase in the number of interventions required when it is time to operate those valves. Especially in long horizontal wells, this can become time-consuming and inefficient. A few technologies exist to address this issue, but they either are too complex or require specialized rigging equipment at the wellsite, which is not desirable. As described herein, a unique, fit-for-application modular sliding sleeve sand screen assembly with dissolvable plugs was developed that eliminates the need for washpipe during run-in-hole (RIH) and allows flow control from several screens by means of a single sliding sleeve door (SSD), thereby also optimizing the subsequent intervention operations by reducing the number of SSDs in the well. The design and field installation of these modular screens is presented in this paper. The new modular sand screen consisted of an upper joint, modular middle joint, modular middle joint with an inflow control device (ICD) integrated into an SSD (with optional dissolvable plugs), a lower joint, and novel field-installable flow couplings between them. The design allows for any number of non-ICD/SSD screen joints to be connected to any number of ICD/SSD joints in any order. A computer-aided design was followed to achieve all the operational and mechanical requirements. Computational fluid dynamics (CFD) was used to optimize the flow performance characteristics. Prototypes were manufactured and tested before conducting successful field trials. The design process, development, and field installation results are presented herein.


2018 ◽  
Vol 224 ◽  
pp. 01078
Author(s):  
Nicolay V. Nosov ◽  
Andrey A. Cherepashkov

The article discusses the problems of computer aided design and technological preparation of production of complex shape parts on machines with numerical program control. An integrated technique for designing processes and control programs for CNC machines is proposed and described, using the technique of software-based referencing and modern electronic measuring tools.


Author(s):  
Kai Xu ◽  
Tsz-Ho Kwok ◽  
Yong Chen

Shape deformation is an important issue in additive manufacturing (AM) processes such as the projection-based Stereolithography. Volumetric shrinkage and thermal cooling during the photopolymerization process combined with other factors such as the layer-constrained building process lead to complex deformation that is difficult to predict and control. In this paper, a general reverse compensation method and related computation framework are presented to reduce the shape deformation of AM fabricated parts. During the reverse compensation process, the shape deformation is calculated based on physical measurements of shape deformation. A novel method for identifying the correspondence between the deformed shape and the given nominal computer-aided design (CAD) model is presented based on added markers. Accordingly, a new CAD model based on the shape deformation and related compensation is computed. The intelligently revised CAD model by going through the same building process can result in a fabricated part that is close to the nominal CAD model. Two test cases have been designed to demonstrate the effectiveness of the presented method and the related computation framework. The shape deformation in terms of L2- and L∞-norm based on measuring the geometric errors is reduced by 40–60%.


Sign in / Sign up

Export Citation Format

Share Document