Basin Modeling as a Tool for Research of Regional Oil and Gas Generation Processes and the Possibility of Replacement of Oil and Gas Riches Illustrated through Traygorodsko-Kondakovskoye Oil Field

2021 ◽  
Author(s):  
Vladimir Andreevich Zubkov ◽  
Pavel Vladimirovich Molodykh ◽  
Ivan Vasilievich Goncharov ◽  
Vadim Valerievich Samoilenko ◽  
Svetlana Vasilievna Fadeeva

Abstract The article presents the results of two-year of research aimed at replenishing the resource and raw material base of the northwestern part of the Tomsk region. The practical application possibilities of basin modeling at the prospecting and exploratory stages of geological study of the subsurface are illustrated. The research was divided into two phases. The first of them has sub-regional coverage and includes an area of 25,000 km2 bounded by the Chkalovsky oil and gas condensate field in the southeast and the administrative boundaries of Tomsk Oblast in the northwest. The section is confined to the Alexandrovsky arch, covers part of the Koltogorsko-Nyurolsky chute and the eastern periclinal of the Nizhnevartovsky arch. At the first stage, a three-dimensional model of oil-and-gas bearing basin formation was created, the tasks of which were to replenish the history of generation and formation of ideas about the ways of hydrocarbon migration. The basin submergence has been reconstructed here and the thermal flow history has been restored. The uneven intensity of heat flow at the bottom of the sedimentary cover over the area is explained by tectonic processes and is complicated by a massive granitoid intrusion. In JSC "Tomsk Petroleum institute", the knowledge base of geochemical features of oil-and-gas source rocks and oils of Western Siberia was formed for years, which allowed to use their own kinetic spectra for the surveyed region. To calibrate the paleotemperatures, both the optical characteristics of vitrinite coals and the indicators of the geochemical properties of organic matter of the Bazhenov formation (4/1 MDBT and Tmax) were used. As a result, the conclusion about the presence of two generation centers of different nature was made, the time and volume of oil generation by organic matter of the Bazhenov formation were predicted. Next, the modeling parameters of hydrocarbon migration and accumulation are described. Modeling shows that the primary migration occurs due to the emergence of abnormally high pore pressure during the generation of hydrocarbons and fluid autofracture of the oil and gas source rock. The results of calculations of secondary migration by two different methods are compared. Despite a number of limitations, the results obtained show a fairly high convergence to real data. At the second stage, on the basis of the regional (parent) model a local daughter model of the formation of the Traygorodsko-Kondakovskoye field within the area of 480 km2 covered by 3D seismic exploration was plotted. The rationale for the necessity and description of the results of additional special geochemical studies of fluids and oil source rock, carried out before starting to build a detailed model of the local stage, is given. The article outlines the basic parameters and gives the differences between the local model and the parent model. Conclusions are made about the possibility of assessing the conductive properties of fault in the formation of deposits. The prediction of trap saturation and resource potential assessment is the result, the achievement of which reduced the risks of geological exploration and formed the recommendations for further geological study of the subsurface.

2017 ◽  
pp. 34-43
Author(s):  
E. E. Oksenoyd ◽  
V. A. Volkov ◽  
E. V. Oleynik ◽  
G. P. Myasnikova

Based on pyrolytic data (3 995 samples from 208 wells) organic matter types of Bazhenov Formation are identified in the central part of Western Siberian basin. Zones of kerogen types I, II, III and mixed I-II and II-III are mapped. Content of sulfur, paraffins, resins and asphaltenes, viscosity, density, temperature and gas content in oils from Upper Jurassic and Lower Cretaceous sediments (3 806 oil pools) are mapped. Oil gradations are identified and distributed. The alternative model of zones of kerogen II and IIS types is presented. The established distributions of organic matter types can be used in basin modeling and in assessment of oil-and-gas bearing prospects.


2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Damien Do Couto ◽  
Sylvain Garel ◽  
Andrea Moscariello ◽  
Samer Bou Daher ◽  
Ralf Littke ◽  
...  

AbstractAn extensive subsurface investigation evaluating the geothermal energy resources and underground thermal energy storage potential is being carried out in the southwestern part of the Swiss Molasse Basin around the Geneva Canton. Among this process, the evaluation of the petroleum source-rock type and potential is an important step to understand the petroleum system responsible of some oil and gas shows at surface and subsurface. This study provides a first appraisal of the risk to encounter possible undesired occurrence of hydrocarbons in the subsurface of the Geneva Basin. Upon the numerous source-rocks mentioned in the petroleum systems of the North Alpine Foreland Basin, the marine Type II Toarcian shales (Lias) and the terrigenous Type III Carboniferous coals and shales have been sampled from wells and characterized with Rock–Eval pyrolysis and GC–MS analysis. The Toarcian shales (known as the Posidonia shales) are showing a dominant Type II organic matter composition with a Type III component in the Jura region and the south of the basin. Its thermal maturity (~ 0.7 VRr%) shows that this source-rock currently generates hydrocarbons at depth. The Carboniferous coals and shales show a dominant Type III organic matter with slight marine to lacustrine component, in the wet gas window below the Geneva Basin. Two bitumen samples retrieved at surface (Roulave stream) and in a shallow borehole (Satigny) are heavily biodegraded. Relative abundance of regular steranes of the Roulave bitumen indicates an origin from a marine Type II organic matter. The source of the Satigny bitumen is supposedly the same even though a deeper source-rock, such as the lacustrine Permian shales expelling oil in the Jura region, can’t be discarded. The oil-prone Toarcian shales in the oil window are the most likely source of this bitumen. A gas pocket encountered in the shallow well of Satigny (Geneva Canton), was investigated for molecular and stable isotopic gas composition. The analyses indicated that the gas is made of a mixture of microbial (very low δ13C1) and thermogenic gas. The isotopic composition of ethane and propane suggests a thermogenic origin from an overmature Type II source-rock (> 1.6 VRr%) or from a terrigenous Type III source at a maturity of ~ 1.2 VRr%. The Carboniferous seems to be the only source-rock satisfying these constraints at depth. The petroleum potential of the marine Toarcian shales below the Geneva Basin remains nevertheless limited given the limited thickness of the source-rock across the area and does not pose a high risk for geothermal exploration. A higher risk is assigned to Permian and Carboniferous source-rocks at depth where they reached gas window maturity and generated large amount of gas below sealing Triassic evaporites. The large amount of faults and fractures cross-cutting the entire stratigraphic succession in the basin certainly serve as preferential migration pathways for gas, explaining its presence in shallow stratigraphic levels such as at Satigny.


2009 ◽  
Vol 12 (10) ◽  
pp. 78-88
Author(s):  
Luan Thi Bui

Cuu Long basin is located mainly in South Vietnam continental shelf and a part of mainland belonging to Mekong estuary area. It has an oval shape, convex seawards and lies along Vung Tau-Binh Thuan coast. Cuu Long basin adjoins mainland northwestwards, separates from Nam Con Son basin by Con Son uplift, southwest part is Khorat - Natuna uplift and northeast part is Tuy Hoa strike-slips separated from Phu Khanh basin. Recent oil and gas quantity exploited from Cuu Long basin is evaluated to be produced dominantly from Oligocene organic-rich sediments. Some studies suggested that organic matter of lower Miocene shale deposits fails to come up to standard of source rock or very poor source rock. Lower Miocene sediments considered how to play a role in providing production into trap is the subject studied more in detailed in this report. The organic carbon (TOC %) in lower Miocene source rocks contains mostly kerogene type III is 0.64-1.32%. The depositional environment of the organic matter in the lower Miocene sediments is terrestral. Therefore the lower Miocene formation may be considered the source rocks, but has not generated hydrocarbon, because it has not passed the oil window. The depositional environment of the organic matter in the lower Miocene sediments is terrestry.


2013 ◽  
Vol 151 (3) ◽  
pp. 394-413 ◽  
Author(s):  
A. MARAVELIS ◽  
G. MAKRODIMITRAS ◽  
N. PASADAKIS ◽  
A. ZELILIDIS

AbstractThe Western flanks of the Hellenic Fold and Thrust Belt are similar to the nearby prolific Albanian oil and gas provinces, where commercial volumes of oil have been produced. The Lower Oligocene to Lower–Middle Miocene slope series at this part of the Hellenic Fold and Thrust Belt provides a unique opportunity to evaluate the anatomy and source rock potential of such a system from an outcrop perspective. Slope progradation is manifested as a vertical pattern exhibiting an increasing amount of sediment bypass upwards, which is interpreted as reflecting increasing gradient conditions. The palaeoflow trend exhibits a western direction during the Late Oligocene but since the Early Miocene has shifted to the East. The occurrence of reliable index species allowed us to recognize several nannoplankton biozones (NP23 to NN5). Organic geochemical data indicate that the containing organic matter is present in sufficient abundance and with good enough quality to be regarded as potential source rocks. The present Rock-Eval II pyrolytic yields and calculated values of hydrogen and oxygen indexes imply that the recent organic matter type is of type III kerogen. A terrestrial origin is suggested and is attributed to short transportation distance and accumulation at rather low water depth. The succession is immature with respect to oil generation and has not experienced high temperature during burial. However, its eastern down-slope equivalent deep-sea mudstone facies should be considered as good gas-prone source rocks onshore since they may have experienced higher thermal evolution. In addition, they may have improved organic geochemical parameters because there is no oxidization of the organic matter.


2021 ◽  
Author(s):  
Denis Sokolov ◽  
Mikhail Delengov ◽  
Regina Sabirianova ◽  
Konstantin Musikhin ◽  
Oleg Bogdanov

Abstract The objective of this paper is to assess the generation potential of the Triassic hydrocarbon (HC) source rocks for the petroleum potential of the Middle-Caspian Oil and Gas Basin. Tectonically the study area belongs to the Epigercine Scythian-Turanian plate, which includes the following major tectonic elements: the Karpinsk-Mangyshlak ridge and the Prikum-Central Caspian system of troughs and uplifts. Comprehensive research approach to identify the main features of the Triassic hydrocarbon system, such as the interpretation of seismic data, laboratory geochemical analysis and evolution restoration of the hydrocarbon systems elements by 3D basin modeling techniques. The geochemical research includes pyrolytic analysis of potential Triassic source rocks, determination of the vitrinite reflectance values, chromatography-Mass Spectrometry studies of molecular structure. The subsequent basin modeling made it possible to integrate a wide range of geological and geophysical information into a single complex. These basin modeling results provide a better understanding of evolution restoration of the hydrocarbon systems elements and make it possible to foresee hydrocarbon accumulation's localization. The combined set of research helped to identify the boundaries of the Triassic HC source rocks in the Middle-Caspian Basin. It also allowed characterizing in detail their geochemical parameters and evaluating the volume of its generation potential. Triassic deposits are part of the taphrogenic intermediate complex of the Scythian platform and mainly located in graben structures. The increased content of organic matter is associated with the Lower Triassic Neftekum Formation of the Olenek Stage, which is composed of clayey limestones and mudstones. The content of total organic carbon (TOC) in limestones in the Eastern Fore-Caucasus area averages 0.1 % in some layers up to 2.05 %. The average TOC content in mudstones is 0.43 %. This parameter is up to 0.9 % in the direction of the East-Manych trough. Triassic deposits were penetrated by 5 wells, the average content of organic carbon was 1.22% in mudstones. The samples show a migrant presence of bitumen. According to 3D basin modeling results, the Olenek HC source rock has practically exhausted its potential in on most of the except the southern part of the study area, as well as the eastern flank. The Olenek stage's Neftekum HC source rock in the southern part of the model is identified with MK1-3 catagenesis gradations, this grade represents the main zone of oil generation. At the northern part of study area, those strata of source rock are positioned at a great depth. The hydrocarbon source rock in those areas have reached the grades of catagenesis MK5-AK1, which represents the zones of condensate and gas formation. The research results allow to take a new look at the influence of the Triassic hydrocarbon system and its prospects of petroleum potential of the Middle-Caspian Oil and Gas Basin. It also allows evaluating the generation parameters variance of the Olenek stage's Neftekum HC source rock regarding its area and time period.


Author(s):  
N.I. Samokhvalov ◽  
◽  
K.V. Kovalenko ◽  
N.A. Skibitskaya ◽  
◽  
...  
Keyword(s):  

2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


Author(s):  
Sara LIFSHITS

ABSTRACT Hydrocarbon migration mechanism into a reservoir is one of the most controversial in oil and gas geology. The research aimed to study the effect of supercritical carbon dioxide (СО2) on the permeability of sedimentary rocks (carbonates, argillite, oil shale), which was assessed by the yield of chloroform extracts and gas permeability (carbonate, argillite) before and after the treatment of rocks with supercritical СО2. An increase in the permeability of dense potentially oil-source rocks has been noted, which is explained by the dissolution of carbonates to bicarbonates due to the high chemical activity of supercritical СО2 and water dissolved in it. Similarly, in geological processes, the introduction of deep supercritical fluid into sedimentary rocks can increase the permeability and, possibly, the porosity of rocks, which will facilitate the primary migration of hydrocarbons and improve the reservoir properties of the rocks. The considered mechanism of hydrocarbon migration in the flow of deep supercritical fluid makes it possible to revise the time and duration of the formation of gas–oil deposits decreasingly, as well as to explain features in the formation of various sources of hydrocarbons and observed inflow of oil into operating and exhausted wells.


Sign in / Sign up

Export Citation Format

Share Document