Evaluating Efficiency of Surfactant-Polymer Flooding with Single Well Chemical Tracer Tests at Kholmogorskoye Field

2021 ◽  
Author(s):  
Mikhail Bondar ◽  
Andrey Osipov ◽  
Andrey Groman ◽  
Igor Koltsov ◽  
Georgy Shcherbakov ◽  
...  

Abstract EOR technologies in general and surfactant-polymer flooding (SP) in particular is considered as a tertiary method for redevelopment of mature oil fields in Western Siberia, with potential to increase oil recovery to 60-70% OOIP. The selection of effective surfactant blend and a polymer for SP flooding a complex and multi-stage process. The selected SP compositions were tested at Kholmogorskoye oilfield in September-December 2020. Two single well tests with partitioning chemical tracers (SWCTT) and the injectivity test were performed. The surfactant and the polymer for chemical EOR were selecting during laboratory studies. Thermal stability, phase behavior, interfacial tension and rheology of SP formulation were investigated, then a prospective chemical design was developed. Filtration experiments were carried out for optimization of slugs and concentrations. Then SWCTT was used to evaluated residual oil saturation after water flooding and after implementation of chemical EOR in the near wellbore areas. The difference between the obtained values is a measure of the efficiency of surfactant-polymer flooding. Pandemic restriction shifted SWCTT to the period when temperature dropped below zero and suitable for winter conditions equipment was required. Two SWCTT were conducted with same surfactant, but different design of slugs in order to prove technical and economic models of SP-flooding. Long-term polymer injectivity was accessed at the third well. Oil saturation of sandstone reservoir after the injection of a surfactant-polymer solution was reduced about 10% points which is around one third of the residual oil after water flooding. Results were compared with other available data such as well logging, lab core flooding experiments, and hydrodynamic simulation. Modeling of SWCTT is ongoing, current interpretation confirms the increase the oil recovery factor after SP-flooding up to 20-25%, which is a promising result. Temperature model of the bottom hole zone was created and verified. The model predicts that temperature of those zones essentially below that average in the reservoir, which is important for interpretation of tracer test and surfactant efficiency. The tested surfactant showed an acceptable efficiency at under-optimum conditions, which is favorable for application of the SP formulation for neighboring field and layers with different reservoir temperatures, but similar water composition. In general, the results of the conducted field tests correlate with the results of the core experiments for the selected surfactant

2011 ◽  
Vol 12 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Muhammad Taufiq Fathaddin ◽  
Asri Nugrahanti ◽  
Putri Nurizatulshira Buang ◽  
Khaled Abdalla Elraies

In this paper, simulation study was conducted to investigate the effect of spatial heterogeneity of multiple porosity fields on oil recovery, residual oil and microemulsion saturation. The generated porosity fields were applied into UTCHEM for simulating surfactant-polymer flooding in heterogeneous two-layered porous media. From the analysis, surfactant-polymer flooding was more sensitive than water flooding to the spatial distribution of multiple porosity fields. Residual oil saturation in upper and lower layers after water and polymer flooding was about the same with the reservoir heterogeneity. On the other hand, residual oil saturation in the two layers after surfactant-polymer flooding became more unequal as surfactant concentration increased. Surfactant-polymer flooding had higher oil recovery than water and polymer flooding within the range studied. The variation of oil recovery due to the reservoir heterogeneity was under 9.2%.


Author(s):  
Fengqi Tan ◽  
Changfu Xu ◽  
Yuliang Zhang ◽  
Gang Luo ◽  
Yukun Chen ◽  
...  

The special sedimentary environments of conglomerate reservoir lead to pore structure characteristics of complex modal, and the reservoir seepage system is mainly in the “sparse reticular-non reticular” flow pattern. As a result, the study on microscopic seepage mechanism of water flooding and polymer flooding and their differences becomes the complex part and key to enhance oil recovery. In this paper, the actual core samples from conglomerate reservoir in Karamay oilfield are selected as research objects to explore microscopic seepage mechanisms of water flooding and polymer flooding for hydrophilic rock as well as lipophilic rock by applying the Computed Tomography (CT) scanning technology. After that, the final oil recovery models of conglomerate reservoir are established in two displacement methods based on the influence analysis of oil displacement efficiency. Experimental results show that the seepage mechanisms of water flooding and polymer flooding for hydrophilic rock are all mainly “crawling” displacement along the rock surface while the weak lipophilic rocks are all mainly “inrushing” displacement along pore central. Due to the different seepage mechanisms among the water flooding and the polymer flooding, the residual oil remains in hydrophilic rock after water flooding process is mainly distributed in fine throats and pore interchange. These residual oil are cut into small droplets under the influence of polymer solution with stronger shearing drag effect. Then, those small droplets pass well through narrow throats and move forward along with the polymer solution flow, which makes enhancing oil recovery to be possible. The residual oil in weak lipophilic rock after water flooding mainly distributed on the rock particle surface and formed oil film and fine pore-throat. The polymer solution with stronger shear stress makes these oil films to carry away from particle surface in two ways such as bridge connection and forming oil silk. Because of the essential attributes differences between polymer solution and injection water solution, the impact of Complex Modal Pore Structure (CMPS) on the polymer solution displacement and seepage is much smaller than on water flooding solution. Therefore, for the two types of conglomerate rocks with different wettability, the pore structure is the main controlling factor of water flooding efficiency, while reservoir properties oil saturation, and other factors have smaller influence on flooding efficiency although the polymer flooding efficiency has a good correlation with remaining oil saturation after water flooding. Based on the analysis on oil displacement efficiency factors, the parameters of water flooding index and remaining oil saturation after water flooding are used to establish respectively calculation models of oil recovery in water flooding stage and polymer flooding stage for conglomerate reservoir. These models are able to calculate the oil recovery values of this area controlled by single well control, and further to determine the oil recovery of whole reservoir in different displacement stages by leveraging interpolation simulation methods, thereby providing more accurate geological parameters for the fine design of displacement oil program.


2018 ◽  
Vol 40 (2) ◽  
pp. 85-90
Author(s):  
Yani Faozani Alli ◽  
Edward ML Tobing ◽  
Usman Usman

The formation of microemulsion in the injection of surfactant at chemical flooding is crucial for the effectiveness of injection. Microemulsion can be obtained either by mixing the surfactant and oil at the surface or injecting surfactant into the reservoir to form in situ microemulsion. Its translucent homogeneous mixtures of oil and water in the presence of surfactant is believed to displace the remaining oil in the reservoir. Previously, we showed the effect of microemulsion-based surfactant formulation to reduce the interfacial tension (IFT) of oil and water to the ultralow level that suffi cient enough to overcome the capillary pressure in the pore throat and mobilize the residual oil. However, the effectiveness of microemulsion flooding to enhance the oil recovery in the targeted representative core has not been investigated.In this article, the performance of microemulsion-based surfactant formulation to improve the oil recovery in the reservoir condition was investigated in the laboratory scale through the core flooding experiment. Microemulsion-based formulation consist of 2% surfactant A and 0.85% of alkaline sodium carbonate (Na2CO3) were prepared by mixing with synthetic soften brine (SSB) in the presence of various concentration of polymer for improving the mobility control. The viscosity of surfactant-polymer in the presence of alkaline (ASP) and polymer drive that used for chemical injection slug were measured. The tertiary oil recovery experiment was carried out using core flooding apparatus to study the ability of microemulsion-based formulation to recover the oil production. The results showed that polymer at 2200 ppm in the ASP mixtures can generate 12.16 cP solution which is twice higher than the oil viscosity to prevent the fi ngering occurrence. Whereas single polymer drive at 1300 ppm was able to produce 15.15 cP polymer solution due to the absence of alkaline. Core flooding experiment result with design injection of 0.15 PV ASP followed by 1.5 PV polymer showed that the additional oil recovery after waterflood can be obtained as high as 93.41% of remaining oil saturation after waterflood (Sor), or 57.71% of initial oil saturation (Soi). Those results conclude that the microemulsion-based surfactant flooding is the most effective mechanism to achieve the optimum oil recovery in the targeted reservoir.


2012 ◽  
Vol 15 (05) ◽  
pp. 541-553 ◽  
Author(s):  
Prabodh Pathak ◽  
Dale E. Fitz ◽  
Kenneth P. Babcock ◽  
Richard J. Wachtman

Summary The technical success of an enhanced oil recovery (EOR) project depends on two main factors: first, the reservoir remaining oil saturation (ROS) after primary and secondary operations, and second, the recovery efficiency of the EOR process in mobilizing the ROS. These two interrelated parameters must be estimated before embarking on a time-consuming and costly process for designing and implementing an EOR process. The oil saturation can vary areally and vertically within the reservoir, and the distribution of the ROS will determine the success of the EOR injectants in mobilizing the remaining oil. There are many methods for determining the oil saturation (Chang et al. 1988; Pathak et al. 1989), and these include core analysis, well-log analysis, log/inject/log (LIL) procedures (Richardson et al. 1973; Reedy 1984), and single-well chemical tracer tests (SWCTT) (Deans and Carlisle 1986). These methods have different depths of investigation and different accuracies, and they all provide valuable information about the distribution of ROS. No single method achieves the best estimate of ROS, and a combination of all these methods is essential in developing a holistic picture of oil saturation and in assessing whether the oil in place (OIP) is large enough to justify the application of an EOR process. As Teletzke et al. (2010) have shown, EOR implementation is a complex process, and a staged, disciplined approach to identifying the key uncertainties and acquiring data for alleviating the uncertainties is essential. The largest uncertainty in some cases is the ROS in the reservoir. This paper presents the results from a fieldwide data acquisition program conducted in a west Texas carbonate reservoir to estimate ROS as part of an EOR project assessment. The Means field in west Texas has been producing for more than the past 75 years, and the producing mechanisms have included primary recovery, secondary waterflooding, and the application of a CO2 EOR process. The Means field is an excellent example of how the productive life and oil recovery can be increased by the application of new technology. The Means story is one of judicious application of appropriate EOR technology to the sustained development of a mature asset. The Means field is currently being evaluated for further expansion of the EOR process, and it was imperative to evaluate the oil saturation in the lower, previously undeveloped zones. This paper briefly outlines the production history, reservoir description, and reservoir management of the Means field, but this paper concentrates on the residual oil zone (ROZ) that underlies the main producing zone (MPZ) and describes a recent data acquisition program to evaluate the oil saturation in the ROZ. We discuss three major methods for evaluating the ROS: core analysis, LIL tests, and SWCTT tests.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Renyi Cao ◽  
Changwei Sun ◽  
Y. Zee Ma

Surface property of rock affects oil recovery during water flooding. Oil-wet polar substances adsorbed on the surface of the rock will gradually be desorbed during water flooding, and original reservoir wettability will change towards water-wet, and the change will reduce the residual oil saturation and improve the oil displacement efficiency. However there is a lack of an accurate description of wettability alternation model during long-term water flooding and it will lead to difficulties in history match and unreliable forecasts using reservoir simulators. This paper summarizes the mechanism of wettability variation and characterizes the adsorption of polar substance during long-term water flooding from injecting water or aquifer and relates the residual oil saturation and relative permeability to the polar substance adsorbed on clay and pore volumes of flooding water. A mathematical model is presented to simulate the long-term water flooding and the model is validated with experimental results. The simulation results of long-term water flooding are also discussed.


Author(s):  
Muhammad Taufiq Fathaddin ◽  
Kartika Fajarwati Hartono ◽  
Trijana Kartoatmodjo

<em>In this paper, a numerical study was conducted to investigate the effect of spatial heterogeneity of multiple porosity fields on oil recovery, residual oil saturation,   polymer retained, and polymer adsorption. The generated porosity fields were applied to UTCHEM for simulating polymer and water flooding in heterogeneous two-layered porous media. From the analysis, the increase of reservoir heterogeneity resulted in higher polymer retention and lower polymer adsorption. In general, polymer flooding results in more balance residual oil saturation in the upper and lower layer than water flooding. This indicated that the vertical sweep efficiency of polymer flooding was better than water flooding. Residual oil saturation ratio between layers after water or polymer flooding was about equal along with the increase of reservoir heterogeneity. Spatial heterogeneity of multiple porosity fields had only a small effect on recovery factor. The variation of the recovery factor of polymer and water flooding due to the reservoir heterogeneity was under 1%</em>.


2021 ◽  
Author(s):  
Julfree Sianturi ◽  
Bayu Setyo Handoko ◽  
Aditya Suardiputra ◽  
Radya Senoputra

Abstract Handil Field is a giant mature oil and gas field situated in Mahakam Delta, East Kalimantan Indonesia. Peripheral Low Salinity Water injection was performed since 1978 with an extraordinary result. The paper is intending to describe the success story of this secondary recovery by low salinity water injection application in the peripheral of Handil field main zone, which successfully increased the oil recovery and brought down the remaining oil saturation beyond the theoretical value of residual oil saturation number. Water producer wells were drilled to produce low salinity water from shallow reservoirs 400 - 1000 m depth then it was injected to main zone reservoirs where the main accumulation of oil situated. This low salinity water reacted positively with the rock properties and in-situ fluids which was described as wettability alteration in the reservoir. It is related to initial reservoir condition, connate water saturation, rock physics and connate water salinity. This peripheral scheme then observed having the sweeping effect on top of pressure maintenance due to long period of injection. The field production performance was indicating the important reduction of residual oil saturation in some reservoirs with continuous low salinity water injection. From static Oil in Place calculation, some reservoirs have high current oil recovery up to 80%. This was proved by in situ residual oil saturation measurement which was performed in 2007 and 2011. It was indicating the low residual saturation as low as 8% - 15%. This excellent result was embraced by a progressive development plan, where water flooding with pattern and chemical injection will be performed later on. The continuation of this peripheral injection is in an on-going development with patterns injection which is called water flooding development. An important oil recovery can be achieved with a simple scheme of low salinity injection, performed in a close network injection, where the water treatment is simple yet significant oil gain was recovered. This innovation technique brings more revenue with less investment compared to chemical EOR injection.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3732 ◽  
Author(s):  
Yaohao Guo ◽  
Lei Zhang ◽  
Guangpu Zhu ◽  
Jun Yao ◽  
Hai Sun ◽  
...  

Water flooding is an economic method commonly used in secondary recovery, but a large quantity of crude oil is still trapped in reservoirs after water flooding. A deep understanding of the distribution of residual oil is essential for the subsequent development of water flooding. In this study, a pore-scale model is developed to study the formation process and distribution characteristics of residual oil. The Navier–Stokes equation coupled with a phase field method is employed to describe the flooding process and track the interface of fluids. The results show a significant difference in residual oil distribution at different wetting conditions. The difference is also reflected in the oil recovery and water cut curves. Much more oil is displaced in water-wet porous media than oil-wet porous media after water breakthrough. Furthermore, enhanced oil recovery (EOR) mechanisms of both surfactant and polymer flooding are studied, and the effect of operation times for different EOR methods are analyzed. The surfactant flooding not only improves oil displacement efficiency, but also increases microscale sweep efficiency by reducing the entry pressure of micropores. Polymer weakens the effect of capillary force by increasing the viscous force, which leads to an improvement in sweep efficiency. The injection time of the surfactant has an important impact on the field development due to the formation of predominant pathway, but the EOR effect of polymer flooding does not have a similar correlation with the operation times. Results from this study can provide theoretical guidance for the appropriate design of EOR methods such as the application of surfactant and polymer flooding.


2012 ◽  
Vol 524-527 ◽  
pp. 1209-1212 ◽  
Author(s):  
Hong Xing Xu ◽  
Chun Sheng Pu ◽  
Hong Bin Yang ◽  
Wen Hua Man ◽  
Tao Yang

Aiming at the heterogeneity characteristics of fractured reservoir, a new type of nitrogen foam flooding agents is proposed. The gas/liquid ratio of nitrogen foam flooding is selected as 3:1, and the injection rate is selected as 3mL/min by the evaluation of foam resistance factor using core flooding equipment. In addition, this foam system has a better performance in the situation of low oil saturation. The results of nitrogen foam flooding show that it can enhance oil recovery by 38% after water flooding using artificial cuboid fractured core, indicating this nitrogen foam formula is suitable for EOR in fractured reservoir.


Sign in / Sign up

Export Citation Format

Share Document