Toward the Rational Design of Chemical Formulations for EOR from Carbonates: Molecular–Level Understanding of Carbonate Wettability and its Reversal by Surfactants and Ions

2021 ◽  
Author(s):  
Shixun Bai ◽  
Jan Kubelka ◽  
Mohammad Piri

Abstract Wettability is a key factor influencing oil production, particularly from the oil-wet carbonate reservoirs where the recoveries are often low. This is a serious problem for the oil industry as significant portion of the world's hydrocarbon reserves resides in carbonate formations. Since the wettability has its roots in the inter-molecular interactions between the oil and the mineral, our objectives are, first, to provide the molecular-level understanding of the carbonate wettability and, second, to apply this understanding to devise effective approaches for wettability alteration. Specifically, we focused on chemical additives such as surfactants and ions, which have demonstrated potential as wettability reversal agents. Molecular dynamics (MD) simulations were used as the primary method to study the wettability properties on newly-developed model calcite and dolomite surfaces that mimic experimentally-known mineral properties. Wettability reversal by cationic, anionic, and non-ionic surfactants, as well as by divalent ions (Ca2+, Mg2+, and SO42-) were investigated. A systematic approach for maximizing the surfactant efficiency by tuning the cationic surfactant head-group chemistry was proposed. To validate the MD simulation results, experimental contact angle measurements on dolomite chips were conducted. The MD simulation results demonstrated that, in the absence of asphaltenes, the oil-wetness of the carbonate minerals arises from the electrostatic attraction between the (negatively charged) oil carboxylates and the (positive) surfaces. Due to this electrostatic nature, the wettability could be reversed only by the cationic (positive) surfactants, which screen the oil-surface attraction. Other surfactant types had negligible effect, in agreement with the experimental contact angle measurements. Moreover, the wettability alteration efficiency of the cationic surfactants was directly related to their molecular charge distributions, offering guidelines for the practical design of the most potent wettability-reversing molecules. The simulations of the wettability alteration by Mg2+, Ca2+, and SO42- ions were likewise consistent with the contact angle measurements. The roles of individual ions in the multiple ion exchange (MIE) mechanism were deduced, and the known strong temperature dependence of their wettability alteration effect explained by the stability of the ion hydration shells. Finally, the simulations also exposed differences between the wettability reversal mechanisms on calcite and dolomite minerals, which may have important practical impact. Our results offer a novel perspective on the carbonate wettability and its reversal from the standpoint of atomic-level interactions and molecular mechanisms. New models for the carbonate surfaces were developed for reliable simulations of the wetting properties, which led to new insights into the origins of carbonate oil-wetness and the mechanisms of its reversal in two types of minerals. Lastly, the MD simulations demonstrated their utility as a powerful tool for the practical design and evaluation of potential chemical agents for EOR from carbonate reservoirs.

2019 ◽  
Vol 89 ◽  
pp. 03004 ◽  
Author(s):  
Saeed Jafari Daghlian Sofla ◽  
Lesley Anne James ◽  
Yahui Zhang

Traditional concepts of simple liquid spreading may not apply to nanoparticle-fluids. Most investigations pertaining to the wettability alteration of solid surfaces due to the presence of nanoparticles in the fluid are oversimplified, i.e. nanoparticles dispersed in DI-water and smooth, homogeneous, and clean surfaces have been used. From a practical enhanced oil recovery (EOR) point of view, the nanoparticles must be dispersed in either seawater or high salinity formation water containing diverse types and concentrations of ions. These ions interact with the electrostatic properties of the nanoparticles. Likewise, the oil phase may contain many surface active components like asphaltene and naphthenic acids which can interact with nanoparticles at oil-water and oil-rock interface. In reality, the rock sample is a heterogeneous, non-smooth, mixed-wet substrate with a diverse mineralogical composition. The electrical charge of minerals can vary when contacted with an ionic fluid. This can alter the electrostatic repulsion between substrate and nanoparticles and consequently the substrate can either attract or repel charged particles, including nanoparticles. Hence, the role of nanoparticles must be evaluated considering multicomponent complex fluids and real formation rock. Despite numerous reports regarding the wettability alteration of reservoir rock from oil-wet to water-wet by nanoparticles, some inherent limitations in the wettability alteration experiments prevent conclusions about the performance of nanoparticles in practical complex conditions. For instance, the wettability alteration by nanoparticles is often determined by contact angle measurements. In this method, the substrates are either aged with (immersed in) nanoparticle-fluids before conducting the experiments or contacted with nanoparticle-fluids before attachment of the oil droplet on the rock surface. Hence, in both cases, before initiating the contact angle measurements, the nanoparticles would already exist at the oil-rock interface possibly giving inaccurate measurements. The objective of this work is to investigate the mechanism of wettability alteration by silica nanoparticles pre-existing on the rock interface (conventional contact angle measurements) and using a new displacement contact angle method to better mimic the scenario of injecting a nanoparticle fluid into the reservoir already containing formation brine. The impact of pre-existing nanoparticles at the oil-rock interface (in the conventional contact angle measurements) on the contact angle measurements are examined for simple (n-decane, NaCl brine, and pure substrates) and complex (crude oil, seawater, and reservoir rock) systems on various wetting conditions of substrates (water-wet and oil-wet). The nanoparticles are dispersed in seawater using our H+ protected method [1]. Then, the effect of surface and nanoparticle charge on the contact angle is evaluated by adjusting the aqueous phase salinity. We also differentiate between the disjoining pressure mechanism and diffusion of silica nanoparticles through the oil phase by testing the attachment of nanoparticles on the rock surface.


2019 ◽  
Vol 89 ◽  
pp. 03003
Author(s):  
Jaspreet S. Sachdeva ◽  
Edison A. Sripal ◽  
Anders Nermoen ◽  
Reidar I. Korsnes ◽  
Merete V. Madland ◽  
...  

Wettability in chalk has been studied comprehensively to understand fluid flow mechanisms impacting coreflooding experiments. Wettability becomes paramount in understanding the parameters influencing chalk-fluid interactions. The main objective of this work is to evaluate as to which degree the wettability in chalk core samples can be controlled in the laboratory. Kansas chalk samples saturated with brine (1.1 M/64284 ppm NaCl) and an oil mixture (60% - 40% by volume of Heidrun oil and heptane) were aged at a constant temperature of 90oC with aging time as the laboratory control variable. A multimodal method incorporating contact angle measurements, wettability index via USBM test, and SEM-MLA analysis was applied in evaluating wettability. A systematic approach was applied with the three different methods to quantify the degree of uncertainty linked to a) wettability estimation and b) the aging procedure to control wettability alteration of Kansas chalk. With a comprehensive suite of samples, we were successfully able to alter the wettability of chalk cores.


2012 ◽  
Author(s):  
Narjes Shojaikaveh ◽  
Cas Berentsen ◽  
Susanne Eva Johanne Rudolph-Floter ◽  
Karl Heinz Wolf ◽  
William Richard Rossen

2007 ◽  
Vol 330-332 ◽  
pp. 877-880 ◽  
Author(s):  
E.S. Thian ◽  
J. Huang ◽  
Serena Best ◽  
Zoe H. Barber ◽  
William Bonfield

Crystalline hydroxyapatite (HA) and 0.8 wt.% silicon-substituted HA (SiHA) thin films were produced using magnetron co-sputtering. These films were subjected to contact angle measurements and in vitro cell culture study using human osteoblast-like (HOB) cells. A wettability study showed that SiHA has a lower contact angle, and thus is more hydrophilic in nature, as compared to HA. Consequently, enhanced cell growth was observed on SiHA at all time-points. Furthermore, distinct and well-developed actin filaments could be seen within HOB cells on SiHA. Thus, this work demonstrated that the surface properties of the coating may be modified by the substitution of Si into the HA structure.


Sign in / Sign up

Export Citation Format

Share Document